机器学习数学基础-最大似然估计与贝叶斯法则

本文介绍了机器学习中的最大似然估计和贝叶斯法则。最大似然估计用于求解参数估计,通过最大化似然函数来确定最可能的参数值。文中以硬币抛掷问题为例进行说明。贝叶斯法则则是计算后验概率的工具,通过先验概率和条件概率推导后验概率。以吸毒检测问题为例,展示了贝叶斯定理如何揭示假阳性带来的误导性结论。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以下文章摘录自

《机器学习观止——核心原理与实践》

京东: https://item.jd.com/13166960.html

当当:http://product.dangdang.com/29218274.html

 

1.最大似然估计 (MLE)

最大似然估计(maximum likelihood estimation),又被译为极大似然估计或者最大概似估计等,是由德国数学家Gauss于1821年提出,并由英国统计学家和生物进化学家R.A. Fisher发展壮大的一种求估计的手段。

假设似然函数定义如下:

其中fD代表的是事件的概率分布的密度函数,表示分布参数。如果我们可以找到一个使得似然函数的取值达到最大,那么它就被称为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值