Hard Margin SVM

本文详细介绍了硬间隔支持向量机(Hard Margin SVM)的概念,从最优化问题出发,探讨了SVM的拉格朗日函数、对偶问题、KKT条件及其在SVM中的应用,最终解释了如何通过KKT条件求解SVM的最优解w和b。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

以下文章摘录自:

《机器学习观止——核心原理与实践》

京东: https://item.jd.com/13166960.html

当当:http://product.dangdang.com/29218274.html

(由于博客系统问题,部分公式、图片和格式有可能存在显示问题,请参阅原书了解详情)

 

 

1.1    Hard Margin SVM

经过前面几个小节的铺垫,我们不但学习了SVM的“初衷”——从感性的层面了解了它的核心思路,而且还阐述了隐藏在SVM背后的一些优化理论(注:建议读者结合本书前面的数学原理章节来做阅读理解),现在是时候对SVM进行“庖丁解牛”了。

前一小节中,我们已经将SVM转化为最优化问题了,即:

所以接下来需要解决的问题是,如何求出上述不等式约束条件下的最小解呢?

首先定义:

以及:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值