图像的典型特征描述子HOG

HOG(方向梯度直方图)是用于物体检测的特征描述子,常与SVM结合用于行人检测。该文介绍了HOG的图像预处理、梯度值计算、梯度直方图构建、Block Normalization以及如何形成HOG特征向量的过程,揭示了HOG在处理光照变化和构建高维特征向量方面的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以下文章摘录自:

《机器学习观止——核心原理与实践》

京东: https://item.jd.com/13166960.html

当当:http://product.dangdang.com/29218274.html

(由于博客系统问题,部分公式、图片和格式有可能存在显示问题,请参阅原书了解详情)

 

1.1.1        HOG

HOG,即方向梯度直方图(Histogram of Oriented Gradient, HOG)是一种用于物体检测的特征描述子。它和SVM相结合,是应用最为广泛的行人检测算法之一。

HOG的作者是Navneet Dalal和Bill Triggs,对应的论文是《Histogram of oriented gradients for human detection》。

图  HOG

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值