R-CNN

R-CNN是深度学习在Object Detection领域的开创性工作,通过Region Proposal减少计算复杂度,将Detection转化为Classification问题。文章介绍了Selective Search算法作为Region Proposal的方法,以及R-CNN的处理流程,包括利用CNN提取特征、SVM分类器训练和位置修正。尽管R-CNN存在训练慢、磁盘空间占用大和推理速度慢的问题,但它为后续的Fast R-CNN等算法奠定了基础。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

以下文章摘录自:

《机器学习观止——核心原理与实践》

京东: https://item.jd.com/13166960.html

当当:http://product.dangdang.com/29218274.html

(由于博客系统问题,部分公式、图片和格式有可能存在显示问题,请参阅原书了解详情)

 

1.1        R-CNN

1.1.1        R-CNN简述

近几年深度学习在图像视觉识别领域取得了长足发展,涌现出了R-CNN、Fast R-CNN、Faster R-CNN、ResNet等一批代表当前最高水平的神经网络算法框架。这些算法框架本身是有关联和继承性的——后继者们以“长江后浪推前浪”的架势不断改进着前人的不足,使得视觉识别领域得以源源不断地革新换代。

图  深度学习在Object Detection中的应用效果

 

诞生于2014年的R-CNN可以说是深度学习在Object Detection领域的开山之作。R-CNN的全称为“Region based Convolutional Neural Network”,其第一作者是曾任职于Microsoft Research的Ross Girshick。与之相对应的Paper名为《Rich feature hierarchies for accurate object detection and semantic segmentation》,并且作者在Github上公布了源码,有兴趣的读者可以

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值