指纹老化研究中的统计应用
1. 引言
统计对于科学家、数学家和工程师而言是宝贵的工具,能为论证或假设提供支持。不过,统计也可能被滥用。在法医学领域,统计可用于制定抽样方案、定量分析和证据解读等。法医学从业者在使用统计方法时较为保守,多采用经过长期发展和测试的传统方法。
所有统计方法都需经过严格检验,才能应用于实际案件。在使用机器学习多元统计时,将数据分为训练集、验证集和测试集是很好的做法,但在法医学领域并不常用,因为需要大量数据。不过,也可采用交叉验证和自助法等其他验证方法。
在重建过去事件时,时间是关键因素。有学者指出,当有可靠的统计信息表明指纹在特定情况下的老化情况时,时间作为证据是概率性的;否则就是推测性的。众多研究致力于开发确定痕迹年龄的技术,但由于痕迹定年存在诸多复杂问题,目前尚未得到妥善解决,也未应用于常规法医学案件工作中。
2. 指纹研究与实践中的统计方法
- 指纹个体性模型
- 个体识别是法医学的基本理念,统计分析能为这一过程增加数值权重。虽然不能通过统计实现个体识别,但能提供有价值的概率,辅助来源识别结论。
- 多位学者提出了用于确定指纹特征点比较统计基础的模型,如弗朗西斯·高尔顿于1892年提出的模型,以及后续的亨利 - 巴尔塔扎德、罗克斯堡等模型。
- 指纹鉴定结论中的概率陈述
- 有学者认为统计是评估指纹证据的强大工具,但目前还没有统计模型能全面涵盖指纹个体性的所有因素。不过,经过充分测试的统计模型仍可