指纹鉴定中统计学的应用与研究进展
指纹鉴定准确性与误差率统计分析
统计分析在指纹鉴定领域发挥着重要作用,主要用于确定指纹鉴定的准确性和误差率。自1993年美国最高法院在Daubert诉Merrell Dow制药公司一案中裁定法官为专家证据可采性的把关人后,“误差率”成为法官评估科学证据可靠性的重要因素之一。2009年美国国家科学院关于法医学的报告也强调需要开展研究以解决法医学科中的准确性、可靠性和有效性问题。
在该报告之前,已有四项关于指纹鉴定准确性的研究。Langenburg在2009年的文章中对这些研究进行了总结。Ulery等人进行的一项有价值的黑箱研究,为确定潜在指纹鉴定人员决策的准确性和可靠性开发了经验方法。在这项研究中,169名潜在指纹鉴定人员将约100个指纹与样本指纹进行比较,结果显示总体误判率为0.1%,漏判率为7.5%。研究还表明,不同参与者对相同比较的独立检查(类似于盲验证)能够检测出所有误判错误和大部分漏判错误。该研究采用传统统计计算方法来确定误差率、后验概率和数据趋势。后续研究也得出了类似的误差率。
Kellman等人提出使用定量图像指标来估计鉴定人员的表现和误差率。这项研究利用描述性统计、相关性测量、回归分析以及创建和验证准确性模型。Mnookin等人在2016年的NIJ报告中使用相同的统计指标,进一步探讨了潜在指纹鉴定误差率与视觉复杂性和认知难度的关系。最近,Hendricks和Neumann发表文章,采用ABC方法分析误差率。他们重新分析了Ulery等人最初黑箱研究的数据,结果相似。他们倡导这种新方法,因为ABC率估计能够检测鉴定人员决策中的行为模式,有助于识别易出错的鉴定人员,从而进行更有针对性的培训,降低错误发生的风险。