- 博客(3)
- 收藏
- 关注
转载 day3.决策树算法梳理
day3.决策树算法梳理 1. 信息论基础(熵 联合熵 条件熵 信息增益 基尼不纯度) 信息熵: 信息熵是信息的期望值,公式为: 熵只依赖X的分布,和X的取值没有关系,熵是用来度量不确定性,当熵越大,概率说X=xi的不确定性越大,反之越小,在机器学期中分类中说,熵越大即这个类别的不确定性更大,反之越小。 联合熵: 两个随机变量X,Y的联合分布,可以形成联合熵,用H(X, Y)表示。 条件熵:...
2019-03-05 21:31:26
628
原创 day2.逻辑回归算法梳理
day2.逻辑回归算法梳理 1、逻辑回归与线性回归的联系与区别 逻辑回归本质上是线性回归,只是在特征到结果的映射中加入了一层逻辑函数sigmoid,即先把特征线性求和,然后使用函数sigmoid作为假设函数来预测。sigmoid函数可以将连续值映射到0和1。 sigmoid函数为: 简单来说,逻辑回归与线性回归都属于广义线性模型,线性回归主要用来解决连续值预测的问题(因变量连续),逻辑回归用来...
2019-03-03 17:12:10
234
原创 day1.线性回归算法梳理
打卡:day1.线性回归算法梳理 机器学习的一些概念 有监督、无监督、泛化能力、过拟合欠拟合(方差和偏差以及各自解决办法)、交叉验证 有监督、无监督: 有监督学习:针对有很多特征的数据集,进行有标签或者目标的学习为有监督学习; 无监督学习:针对有很多特征的数据集,试图显式或者隐式地学习出概率分布为无监督学习。 传统上,将回归、分类或者结构化输出问题称为监督学习,将支持其他任务的密度估计称为无监督...
2019-03-01 20:58:24
255
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人