[tarjan缩点 + 割点 / 割边 + 重边] 无向图求割点

本文深入探讨无向图的割点和割边概念,结合Tarjan算法进行求解。通过实例解析算法流程,阐述如何识别图中关键节点和边,为图论学习者提供实战参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include <iostream>
#include <cstdio>
#include <cmath>
#include <stack>
#include <cstring>
#define ll long long
#define db double
using namespace std;

const int mn = 103;

int f[mn], ge[mn];

int ecnt, to[mn * mn], nx[mn * mn], fr[mn];
void addedge(int u, int v)
{
	++ecnt;
	to[ecnt] = v;
	nx[ecnt] = fr[u];
	fr[u] = ecnt;
}


/// Tarjan 模板
int idx, low[mn], dfn[mn];
bool insta[mn];
stack<int> sta;
void tarjan(int u, int fa)
{
	int son = 0;	/// 求割点
	
	low[u] = dfn[u] = ++idx;
	sta.push(u);
	insta[u] = 1;
    bool fir = 1;    /// 带重边处理
	for (int i = fr[u]; i != -1; i = nx[i])
	{
		int v = to[i];
		if (v == fa && fir)	/// 无向图
		{
            fir = 0;
            continue;
        }
		if (!dfn[v])
		{
			/// 求割点
			son++;
			f[v] = u;
			///
			
			tarjan(v, u);
			
<think>嗯,用户想了解Tarjan算法的原理。我需要先理清楚这些概念的定义以及它们之间的关系,然后逐步解释。首先,Tarjan算法是论中常用的算法,主要用于寻找强连通分量(SCC)、、桥等。通常是在找到强连通分量后,将每个SCC成一个节,形成有向无环(DAG)。则是无向图中删除后会导致不连通的节。可能需要分步骤来讲解。 首先,我应该从Tarjan算法的基础开始,比如深度优先搜索(DFS)的应用,以及如何通过维护发现时间和low值来识别这些结构。的判断条件是什么?当一个顶的子节无法绕过该顶到达更早的节时,该顶就是。而则是处理有向中的强连通分量,通过Tarjan找到所有SCC后,每个SCC合并成一个节,形成DAG。 接下来,要确保逻辑清晰,先讲Tarjan算法的核心思想,再分别介绍的应用。可能需要举例说明,比如的例子,如何通过DFS树中的子节low值是否大于等于当前节的发现时间来判断。的例子,如何处理每个节的栈和low值来识别SCC,并合并它们。 需要注意用户可能需要这些知识来解决实际问题,比如算法竞赛或网络分析中的问题,因此要强调实际应用和算法步骤。另外,用户提到要使用中文,结构清晰,所以分解释可能更合适。还要检查LaTeX格式是否正确,比如数学符号和公式用$...$包裹,独立公式用$$...$$。 可能会有混淆的地方,比如Tarjan算法在无向图和有向中的不同应用,属于无向图,而处理的是有向的强连通分量。需要明确区分这两种情况,避免用户混淆。此外,解释low数组的含义时,要清楚说明其代表当前节通过DFS树中的子树能够回溯到的最早节的时间戳。 最后,总结Tarjan算法的优势,比如线性时间复杂度,高效处理大规模结构。可能还需要提到相关概念,比如桥()和双连通分量,但根据用户问题,放在上。</think>好的,我将分步骤介绍**Tarjan算法的原理**,尽量保证逻辑清晰。 --- ### 一、Tarjan算法的核心思想 Tarjan算法基于**深度优先搜索(DFS)**,通过维护两个关键数组: - **$dfn[u]$**:记录节$u$的DFS遍历时间戳(发现顺序) - **$low[u]$**:记录节$u$通过其子树能回溯到的最小时间戳 通过比较$dfn$和$low$的值,可以识别中的关键结构(如、强连通分量)。 --- ### 二、(Cut Vertex)的定义与判定 #### 1. 什么是? 在**无向图**中,若删除某节的连通分量数增加,则该节称为。 #### 2. 判定条件(基于Tarjan算法) 对于当前节$u$: - **情况1**:若$u$是DFS树的根节,且有两个及以上子树 → $u$是。 - **情况2**:若$u$非根节,存在子节$v$满足: $$low[v] \ge dfn[u]$$ 即$v$无法绕过$u$访问到更早的祖先 → $u$是。 #### 3. 示例代码逻辑 ```python def tarjan(u, is_root): global index dfn[u] = low[u] = index index += 1 child = 0 for v in adj[u]: if not dfn[v]: tarjan(v, False) low[u] = min(low[u], low[v]) if not is_root and low[v] >= dfn[u]: cut_vertex.add(u) child += 1 else: low[u] = min(low[u], dfn[v]) if is_root and child >= 2: cut_vertex.add(u) ``` --- ### 三、(将强连通分量合并为) #### 1. 什么是? 在**有向**中,将每个强连通分量(SCC)合并为一个超级节,最终形成**有向无环(DAG)**。 #### 2. Tarjan算法找SCC的判定 - 在DFS过程中维护一个栈,当回溯时满足: $$low[u] = dfn[u]$$ 说明栈中从$u$到栈顶的元素构成一个SCC。 #### 3. 示例代码逻辑 ```python stack = [] on_stack = [False] * (n+1) scc_id = 0 def tarjan(u): global index dfn[u] = low[u] = index index += 1 stack.append(u) on_stack[u] = True for v in adj[u]: if not dfn[v]: tarjan(v) low[u] = min(low[u], low[v]) elif on_stack[v]: # 仅处理栈中节(避免交叉) low[u] = min(low[u], dfn[v]) if low[u] == dfn[u]: # 发现SCC scc_id += 1 while True: v = stack.pop() on_stack[v] = False scc[v] = scc_id if v == u: break ``` --- ### 四、关键原理总结 1. ****:依赖$low[v] \ge dfn[u]$判断子节是否无法绕过当前节。 2. ****:利用栈和$low[u] = dfn[u]$分离SCC,每个SCC对应DAG中的一个节。 3. **时间复杂度**:均为$O(V+E)$,与DFS相同。 --- ### 五、典型应用场景 1. ****:网络可靠性分析,关键节识别。 2. ****:有向的简化(如解DAG上的最长路径、环路消除)。 希望以上内容能帮助您系统理解这些概念!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值