- 博客(122738)
- 资源 (6)
- 收藏
- 关注

原创 万字详解:36岁中国程序员未来三十年人生规划2025-2055
中国程序员36岁后的30年人生规划 36岁的中国程序员正处于职业与人生的关键转折点。面对技术迭代、AI崛起和行业变革,未来30年规划应分三阶段推进: 36-40岁(转型期):选择技术深耕或管理转型,聚焦AI、云计算等新兴领域,突破职业瓶颈,提升软技能。 41-50岁(黄金期):发展多元化职业路径,打造个人品牌,建立副业与投资组合,应对职业风险。 51-65岁(价值期):转向咨询、教育等柔性工作,参与公益活动,实现经验传承与人生价值。规划需兼顾技术敏感度、财务稳健和生活平衡,在快速变化的行业中保持持续竞争力与
2025-07-07 01:23:20
1598
8

原创 《Agentic AI 实战》第7章 DeepResearcher:基于MCP和browser-use实现深度研究Agent
DeepResearcher:基于MCP与浏览器自动化的深度研究Agent DeepResearcher是一个结合MCP(Model Context Protocol)和browser-use技术的智能研究Agent系统,实现了网络搜索、学术论文分析、网页内容提取与结构化报告生成的全流程自动化。系统采用分布式微服务架构,包含研究服务器、客户端服务器、LangGraph工作流和Streamlit前端等核心组件。 技术亮点包括: 通过MCP协议标准化连接LLM与外部工具 使用browser-use技术进行深度网
2025-06-23 23:10:15
549

原创 《Agentic AI 实战》第6章 DataInsight:智能数据分析 Agent
摘要:智能数据分析Agent的实现 本文介绍了如何构建一个基于ReAct范式的智能数据分析Agent(DataInsight),能够通过自然语言完成数据库查询与可视化任务。系统实现主要包括: 环境准备:配置MySQL数据库(如salesdb)和Python依赖库,包括LangChain、SQLAlchemy和Matplotlib等工具链。 核心架构: 采用ReAct(推理-行动-反馈)循环的工作流 集成SQL查询与数据可视化功能 实现自然语言到SQL语句的自动转换 关键技术: 通过LangChain框架构建
2025-06-23 23:09:26
385

原创 《Agentic AI 实战》 第5章 ArxivExplorer:学术论文研究助手Agent
本章介绍了一个面向科研工作者的学术论文研究助手Agent——ArxivExplorer的系统设计与实现。该Agent整合arXiv开放平台数据源,采用RAG技术、向量数据库和微服务架构,提供高效的文献检索、语义分析和知识推理功能。文章详细阐述了从需求分析到系统设计的全流程,包括科研文献检索的核心痛点(检索效率低、语义理解难等)、基于微服务的模块化架构设计(数据采集、知识库构建、语义检索等核心服务),以及数据流转与API接口规范。通过Python技术栈与主流工具(LangChain、Pinecone等)的具体
2025-06-23 23:07:10
179

原创 《Agentic AI 实战》 第4章 QuickChat:基于LangChain的对话式Agent入门项目
摘要 本章介绍基于LangChain的对话式AI Agent项目QuickChat的开发过程。项目采用Python技术栈,结合LangChain、FastAPI、Redis和OpenAI等组件,实现一个具备多轮对话能力的轻量级对话助手。 架构设计方面,系统采用模块化设计,包括输入处理、对话管理、提示模板、大模型交互、会话存储和API服务等模块。核心功能包括自然语言理解与生成、多轮对话管理、会话历史存储等,并通过RESTful API提供服务。 实现细节上,项目利用LangGraph构建对话工作流,使用Mes
2025-06-23 23:06:14
88

原创 《Agentic AI 实战》第3章 AI Agent开发环境与工具链
AI Agent开发环境搭建指南 本章系统介绍了AI Agent开发所需的环境配置与工具链。主要内容包括: Python环境配置:推荐使用Python 3.10+版本,通过pyenv进行版本管理,并创建虚拟环境隔离项目依赖。 依赖管理:使用pip-tools工具规范管理项目依赖,确保开发环境的一致性。 核心工具链:详细介绍了LangChain、LangGraph等AI开发框架的功能特点,以及FastAPI、Redis等配套工具的应用场景。 开发实践:强调环境变量管理和项目结构设计的重要性,确保开发安全性及团
2025-06-23 23:04:55
66

原创 《Agentic AI 实战》第2章 大型语言模型(LLM)与提示工程基础
摘要 本章系统介绍了大型语言模型(LLM)的技术发展与选型策略,以及提示工程的核心技术。主要内容包括:主流LLM架构(如GPT、Llama、Gemini等系列)的技术特点与适用场景;LLM的关键能力与局限性分析;基于能力需求、部署方式等维度的选型指南;OpenAI和国内火山方舟模型的API调用示例;提示工程基础与高级技术(如思维链、自我反思等)的概述。为AI Agent开发提供了模型选择和提示优化的方法论基础,帮助开发者构建高效智能系统。
2025-06-23 23:04:11
60

原创 《Agentic AI 实战》第1章 AI Agent概述
摘要:AI Agent是指具备自主感知、推理、决策和行动能力的智能系统,与传统被动式AI(如分类器)相比,其核心特征包括自主性、多模态感知、复杂推理、主动执行工具调用及持续学习能力。AI Agent以LLM为核心,结合外部工具与知识库形成任务闭环,例如智能日程助手能动态协调多方需求。Agentic AI则更进一步,强调多Agent协作、自主目标设定和跨系统整合能力,适用于复杂场景(如自动化研究助手)。前者聚焦单体智能体(如客服机器人),后者构建智能体生态系统(如LangChain框架的动态任务编排)。两者分
2025-06-23 23:02:09
84

原创 程序员职业生涯系列:关于技术能力的思考与总结
引子儒、释(佛)、道三家思想:释(佛家):处理好人与心的关系,我们要战胜自己;儒(儒家):处理好人与人的关系,我们要团结好他人;道(道家):处理好人与自然的关系,我们应该顺势而为。明人陆绍珩《醉古堂剑扫》自叙有云:一愿识尽人间好人,二愿读尽世间好书,三愿看尽世间好山水。或曰:静则安能,但身到处,莫放过耳。旨哉言乎!余性懒,逢世一切炎热争逐之场,了不关情。惟是高山流水,任意所如,遇翠丛紫莽,竹林芳径......
2022-08-29 10:00:40
132985
241
原创 AI代码生成在自动化测试中的创新应用
自动化测试是软件质量的“守门员”,但传统测试脚本编写耗时、维护成本高、覆盖场景有限的痛点,一直困扰着测试工程师。AI代码生成技术的崛起,就像给测试团队配备了一位“超级写手”——只需用自然语言描述测试需求,就能快速生成符合规范的测试脚本,甚至能自动优化断言、生成测试数据。本文将从背景痛点核心概念技术原理实际应用和未来趋势五个维度,拆解AI代码生成在自动化测试中的创新价值,用生活化比喻、具体代码示例和流程图,让你彻底读懂这场测试革命。
2025-07-09 15:22:19
1
原创 基于Transformer的多语言AI应用架构设计详解
语言异质性:不同语言的语法(如中文无时态、英文有时态)、词汇(如“bank”的多义性)、结构(如日文的主宾谓结构)差异大。数据稀疏性:低资源语言的平行语料(如“英文-冰岛语”对照数据)匮乏,导致模型无法有效学习。跨语言对齐:如何建立不同语言之间的语义对应关系(如“猫”→“cat”→“ねこ”)。效率与 scalability:多语言模型的参数规模大(如mT5-XXL有130亿参数),部署成本高。基于Transformer的多语言AI应用架构设计,是原理与实践的结合通用与专用的平衡。
2025-07-09 15:04:15
142
原创 教育行业的AI原生应用:个性化学习的未来
个性化学习的本质是**“匹配”:将学习者状态**(认知水平、学习风格、兴趣)与学习资源(内容、路径、反馈)进行动态匹配。状态感知:如何精准捕捉学习者的实时认知状态(如"未掌握的知识点"、“认知负荷过高”)?资源适配:如何根据学习者状态生成定制化的学习资源(如"用动画解释微积分" vs “用公式推导微积分”)?路径优化:如何设计动态学习路径(如"先学线性代数再学机器学习" vs “先学机器学习再补线性代数”)?反馈强化:如何提供有效反馈(如"指出错误原因" vs “仅告知对错”),促进深度学习?
2025-07-09 14:46:29
121
原创 AI算力网络终端安全:EDR系统部署指南
目的:指导企业IT安全人员在AI算力网络(如数据中心GPU集群、边缘AI设备)中正确部署EDR系统,解决“传统杀毒软件查不到、威胁响应慢”的问题。范围:覆盖EDR系统的核心概念架构原理部署流程(需求分析→工具选择→安装配置→测试验证),以及AI算力终端的特殊优化(如轻量级代理、GPU性能适配)。本文采用“故事引入→概念解析→原理架构→实战部署→应用场景”的逻辑,逐步拆解EDR系统部署的每一步。即使你是“终端安全新手”,也能跟着流程完成部署。
2025-07-09 14:24:16
285
原创 AI原生应用工具对比:TensorFlow vs PyTorch 谁更胜一筹?
为什么要对比TensorFlow和PyTorch?因为它们占据了深度学习框架市场90%以上的份额,几乎是所有AI开发者的“入门必修课”。两者的设计哲学有什么不同?哪些场景下选TensorFlow更高效?哪些场景下PyTorch能让你“事半功倍”?范围覆盖模型开发流程(从定义到训练)、生产部署能力(从云端到移动端)、社区生态(文档、工具、支持)三个核心维度。本文会用“搭积木用“搭积木”比喻深度学习模型开发,引出两者的核心差异;
2025-07-09 14:10:41
408
原创 AI产品迭代优化:基于可用性评估的持续改进方法
当你打开某电商APP,推荐栏里全是不感兴趣的商品;当你用对话机器人订机票,它反复追问你已经说过的信息——这些AI产品的“智能翻车”场景,本质上都是可用性问题。与传统软件不同,AI产品的“智能性”是动态的、不确定的,用户体验更依赖于“AI是否理解我”“AI是否帮到我”。本文将带你走进AI产品迭代的核心逻辑:如何用可用性评估作为“导航仪”,从用户痛点出发,通过“评估-优化-再评估”的闭环,让AI产品从“能用”进化到“好用”甚至“爱用”。我们会用电商推荐系统“银行对话机器人”的真实案例,拆解可用性评估的。
2025-07-09 13:55:25
72
原创 AI算力网络与通信领域算力交易的网络架构优化
想象一下:你是一个AI工程师,想训练一个能识别猫的深度学习模型。10年前,你用自己的电脑就能搞定;5年前,你需要租一台云服务器;现在,你可能需要调用1000台GPU的算力——而且得“按需取用”,不用的时候还给“算力池”。大规模、分布式、实时性。算力分布不均:有的公司有大量闲置GPU(比如游戏公司深夜的服务器),有的公司急缺算力(比如AI创业公司);传输效率低下:用传统网络调用远程算力,延迟可能高达几百毫秒,根本满足不了自动驾驶、实时推理的需求;
2025-07-09 13:35:54
479
原创 AI原生应用领域行为分析:为企业带来新机遇
什么是AI原生应用中的行为分析?(不是传统应用的"事后统计",而是"实时感知+智能决策"的闭环)它能给企业带来什么?(从"被动响应"到"主动预测"的业务升级)范围覆盖:核心概念解析、算法原理、实战代码、应用场景及未来趋势。用"超市的烦恼"故事引入,说明行为分析的必要性;拆解"AI原生应用"和"行为分析"的核心概念,用"智能超市"类比;用Python代码实战:预测用户流失(行为分析的典型场景);探讨行为分析在电商、金融、医疗等领域的应用;分析未来趋势(实时、多模态、隐私保护)。
2025-07-09 13:20:00
345
原创 Claude赋能AI原生应用,提升用户体验
你有没有过这样的经历?想给妈妈买件夏天的裙子,打开购物App,得先选“女装”→“连衣裙”→“夏装”,再填“宽松”“棉麻”“500元以内”这些筛选条件,结果出来的还是一堆不符合的?或者想规划旅行,得翻几十篇攻略,对比酒店、景点、交通,越看越头疼?传统App是“功能驱动”的——它给你一堆按钮和选项,你得自己“适应”它。你说句话,它就懂你要什么;你提个需求,它帮你搞定一切。这就是AI原生应用的目标:用AI(尤其是大模型)作为核心,让App从“工具”变成“助手”,甚至“伙伴”。
2025-07-09 13:05:53
326
原创 行为分析在AI原生应用中的场景化落地
在这个"用户比产品更聪明"的时代,传统应用的"一刀切"服务早已过时——你不会给喜欢冒险游戏的小朋友推荐拼图,也不会给刚买了运动鞋的用户推荐口红。AI原生应用的核心目标,是通过"读懂"用户行为,提供"千人千面"的个性化服务。本文的范围是:用通俗语言解释行为分析的原理,结合代码和场景说明其在AI原生应用中的落地方法。核心概念:用"游戏日记"故事讲清"行为数据"“行为分析”"AI原生应用"是什么;原理流程:用"妈妈看日记"的逻辑,拆解行为分析的5步流程(收集-预处理-特征提取-模型训练-输出);
2025-07-09 12:48:36
418
原创 AI原生应用领域对话状态跟踪:优化语音交互体验
你有没有遇到过这样的情况?跟语音助手说“我要订明天去上海的机票”,它问“几点?”,你说“上午10点”,它又问“哪个机场?”——这没问题。但如果过了一会儿你说“改成下午2点”,它却反问“你要改哪个机票?”,你是不是会觉得“它怎么这么笨”?这就是**对话状态跟踪(Dialog State Tracking, DST)**的重要性:它决定了语音助手能不能“记住”之前的对话,能不能“理解”你的上下文。本文的目的,就是用最通俗的语言讲清楚DST是什么、怎么工作,以及它如何让AI原生应用的语音交互更“聪明”。
2025-07-09 12:33:29
353
原创 AI原生应用领域,Copilot带来的变革
假设你有一个“智能厨房助手”:它能听懂你说“今晚想吃清淡的鱼”,自动从冰箱里拿出食材(物联网感知)、推荐菜谱(生成式AI)、控制烤箱温度(自动化),甚至根据你的口味调整咸淡(个性化学习)。这个助手不是“传统冰箱加个语音助手”,而是从设计之初就把“AI决策”作为核心——这就是AI原生应用。核心驱动:生成式AI(如大语言模型、图像生成模型)作为“大脑”,处理复杂逻辑;交互方式:自然语言、多模态(语音+视觉+文本)取代传统按钮;自我进化:通过用户反馈持续优化模型,而非依赖人工更新。
2025-07-09 12:18:09
224
原创 AI原生SaaS应用的容器化部署实践
使用ConfigMap存储租户配置metadata:data:指标类别具体指标说明预警阈值性能指标推理延迟模型处理请求的时间吞吐量每秒处理请求数< 预期负载的70%批处理效率批处理请求的平均大小< 批大小的50%资源指标GPU利用率GPU计算资源使用率> 90% 或 < 10%内存使用GPU/CPU内存使用量> 85% 内存限制网络I/O容器网络流量异常波动 > 50%业务指标租户请求数每个租户的请求量异常增长 > 100%错误率请求失败比例> 1%
2025-07-09 11:57:41
623
原创 AI训练在AI算力网络与通信中的训练策略调整
随着AI模型从“小作坊”(百万参数)进化到“超级工厂”(万亿参数),算力需求呈爆炸式增长,传统集中式训练已无法应对。算力网络(云-边-端协同的分布式算力基础设施)成为解决这一问题的关键,但通信瓶颈(延迟、带宽、可靠性)却成为训练效率的“绊脚石”。本文将以“电力电网”类比算力网络,用“搬砖”“搭房子”解释并行训练逻辑,一步步拆解AI训练策略如何适配算力网络的特点:从数据并行的“流量优化”到模型并行的“分工协作”,从梯度压缩的“减肥术”到云边协同的“本地赋能”。
2025-07-09 11:37:56
570
原创 专家解读:NFV如何解决AI算力网络的通信瓶颈问题
随着AI模型规模呈指数级增长(从百万参数到千亿参数),算力需求已达到前所未有的水平,而通信基础设施正成为释放AI算力潜能的关键瓶颈。本分析系统阐述网络功能虚拟化(NFV)如何通过软件定义架构、动态资源分配和智能流量管理,从根本上重构AI算力网络的通信范式。通过将传统硬件网络功能转化为可编程软件实例,NFV实现了AI工作负载与网络资源的协同优化,显著提升了数据传输效率、降低了通信延迟并提高了资源利用率。
2025-07-09 11:23:21
167
原创 AI算力网络与通信领域隐私计算的安全机制探讨
当GPT-4需要调用全球10万张GPU的算力、当智能汽车需要实时共享道路数据训练自动驾驶模型、当医院想联合训练癌症预测模型却不敢泄露病人隐私——AI算力网络(连接全球分布式算力的“数字电网”)与隐私计算(让数据“可算不可见”的“隐形手套”)的结合,成为解决这些问题的关键。但如何在算力网络的分布式环境中,确保数据传输、计算过程的隐私性?本文将从安全机制入手,用“寄快递”“一起做饭”等生活化比喻拆解同态加密、联邦学习、差分隐私等核心技术,结合代码示例与真实案例,探讨AI算力网络中隐私计算的实现逻辑与未来方向。
2025-07-09 11:06:32
183
原创 AI原生应用领域短期记忆的关键作用与实现原理
我们常说“AI越来越聪明”,但“聪明”的前提是“能记住”——记住当前任务的上下文。聊天机器人要记住“你刚才说‘我感冒了’”,才能接着问“有没有发烧?自动驾驶要记住“1秒前前方车辆踩了刹车”,才能及时减速;代码助手要记住“你正在写Python的循环”,才能推荐正确的语法。这些“临时记住的信息”,就是AI的短期记忆用“生活比喻”讲清短期记忆的核心价值;用“代码+数学”拆解短期记忆的实现逻辑;用“实战案例”展示短期记忆在AI原生应用中的具体用法。
2025-07-09 10:46:25
306
原创 从入门到精通:AI算力网络监控的完整指南
当我们谈论AI大模型时,往往聚焦于算法的精妙或参数的庞大,却容易忽略背后支撑它们的“隐形基石”——算力网络。如果把AI训练比作一场“数据长征”,那么算力集群是“运输车队”,网络就是“高速公路”,而监控系统则是“交通指挥中心”。没有它,车队可能在半路抛锚,高速公路可能拥堵瘫痪,甚至整个长征都会失败。本文将从入门级概念拆解到精通级实战技巧,用“工厂比喻”“仪表盘类比”等生活化案例,帮你彻底搞懂AI算力网络监控的底层逻辑。如何用“体检报告”视角解读算力集群的健康状态?
2025-07-09 10:30:44
388
原创 模糊逻辑与深度学习融合的前沿研究
我们为什么要把“模糊逻辑”和“深度学习”放在一起?因为真实世界的问题从来不是非黑即白的:比如“判断一个人是不是‘高个子’”“决定空调该开多少度才‘舒服’”,这些问题需要“模糊的判断”;而同时,我们又需要AI从大量数据中学习规律(比如用户喜欢的温度习惯)。本文的目的,就是帮你理解“模糊逻辑+深度学习”的融合原理,以及它们如何解决更智能的现实问题。范围涵盖:核心概念解释、融合架构设计、代码实战、应用场景及未来趋势。故事引入:用妈妈煮面的例子引出模糊逻辑,用手机人脸识别引出深度学习;核心概念。
2025-07-09 10:07:04
359
原创 常微分方程在工程学中的10大经典应用案例
本文的核心目的是打破“ODE=抽象数学”的误解,通过工程学中最常见的10个案例,展示ODE如何从“理论公式”转化为“工程设计的核心工具”。范围覆盖机械、电气、热工、流体、化工、控制等6大工程领域,每个案例都包含“问题场景→模型建立→求解分析→工程应用”的完整链条。故事引入:用“弹簧振子”的生活场景引出ODE的核心价值;核心概念:用“快递盒的变化”比喻ODE,讲清楚“什么是ODE”“为什么需要ODE”;10大经典案例:每个案例用“问题→模型→求解→应用”的逻辑展开,结合代码和图表;
2025-07-09 09:49:48
557
原创 数学领域中算子理论的基础模型
想象你有一台神奇的"数学料理机":放进一个数字,它吐出另一个数字;放进一个函数,它变出另一个函数;放进一个向量,它输出一个新向量。这台"料理机"就是算子——数学中描述"变换"的终极工具。算子理论研究的正是这些"数学料理机"的性质:它们如何工作?有哪些"食谱"(类型)?会不会"过载"(无界)?能不能"反向操作"(可逆)?本文的目的是:用"拆解玩具"的方式,把算子理论的基础模型拆开、洗净、重新组装,让你看到每个零件的作用和它们如何协同工作。
2025-07-09 09:29:21
255
原创 数学领域中马尔可夫链的应用与前景
本文的目的是用“小学生能听懂的话”讲清楚马尔可夫链——它是什么、怎么工作、能用来做什么。我们不会纠结复杂的数学证明,而是聚焦“直观理解”和“实际应用”,范围覆盖马尔可夫链的核心概念、代码实现、常见应用场景,以及未来趋势。故事引入:用猜拳游戏引出马尔可夫链的核心逻辑;核心概念:用生活例子解释“状态”“转移概率”“无记忆性”;原理可视化:用表格和流程图展示马尔可夫链的结构;代码实战:用Python模拟猜拳和文本生成;应用场景:看看马尔可夫链在AI、金融、自然语言处理中的作用;未来趋势。
2025-07-09 09:12:24
286
原创 金融数学与机器学习:量化投资的未来趋势
量化投资的本质是在不确定市场中寻找可复制的超额收益传统金融数学的瓶颈:假设市场有效、资产收益服从正态分布、无摩擦交易,无法应对现实中的黑天鹅事件(如2008年金融危机)、非线性因子交互(如成长股与周期股的联动)。机器学习的瓶颈:依赖大量标注数据、易过拟合(Overfitting)、缺乏可解释性(黑箱问题),无法解决因果关系推断(如“股价上涨”与“成交量增加”的逻辑链)。两者的融合目标是:用金融数学的理论框架约束机器学习的数据驱动,用机器学习的非线性能力突破金融数学的假设限制。
2025-07-09 03:56:53
379
原创 AI原生应用安全防护:如何检测和防御对抗性攻击?
AI原生应用(AI-Native Application)是以机器学习/深度学习模型为核心决策引擎的应用,其价值依赖于模型对复杂数据的自动处理能力。生成式AI:ChatGPT(文本生成)、DALL·E 3(图像生成)、Suno AI(音乐生成);自主决策系统:特斯拉FSD(自动驾驶)、AlphaFold(蛋白质结构预测)、金融风控模型(欺诈检测);感知类应用:面部识别系统、医疗影像诊断模型、智能监控摄像头。与传统应用(规则驱动)不同,AI原生应用的风险具有数据依赖性与模型黑盒性。
2025-07-09 03:39:46
293
原创 AI原生SaaS的持续交付架构:从开发到部署全流程
如果说传统SaaS是“出厂即定型”的电子设备,那么AI原生SaaS更像“会自主成长的植物”——它依赖数据“养分”不断进化,需要持续的“浇水”(模型训练)、“修剪”(性能优化)和“光照”(用户反馈)。而持续交付(Continuous Delivery, CD)就是培育这盆花的“智能园艺系统”:从种子(数据)到幼苗(模型),再到开花(服务),每一步都自动化、可验证,确保每一次迭代都能安全、快速地传递给用户。
2025-07-09 03:26:11
585
原创 探索AI原生应用差分隐私的技术边界
AI原生应用(如ChatGPT、抖音推荐、医疗诊断AI)的核心竞争力是“用数据训练模型”,但用户的数据(聊天记录、浏览行为、病历)是“隐私资产”。我们需要一种技术,让模型“记住群体规律”(比如“年轻人喜欢刷短视频”),但“忘记个体细节”(比如“张三昨天刷了10条宠物视频”)。差分隐私就是为解决这个问题而生的——它为AI应用的“数据使用”和“隐私保护”划清了边界。用“超市小票的秘密”故事引出差分隐私的需求;用“给数据戴口罩”“隐私零花钱”比喻解释核心概念;
2025-07-09 03:10:25
377
原创 上下文窗口在AI原生应用中的5大应用场景
上下文窗口(Context Window)代表了大型语言模型(LLMs)在生成响应时能够"看到"的输入文本总量限制,通常以tokens为单位计量。这一架构约束源自Transformer模型的自注意力机制计算复杂度(O(n²))与内存限制的权衡,却意外成为塑造AI系统行为与能力边界的关键因素。GPT-4 Turbo (2023):128k tokens,支持16k输出部分研究模型:已实现1M+ tokens窗口(如LongNet、MemGPT等)
2025-07-09 02:55:30
438
原创 走进数学领域,认识泰勒展开
本文的核心目的是用通俗易懂的方式解释泰勒展开的本质:它是如何将复杂函数拆解为多项式的,以及为什么这种拆解有用。我们会覆盖泰勒展开的基本概念(如展开点、导数项、余项)、数学公式、代码实现,以及实际应用场景。范围限定在单变量函数的泰勒展开(不涉及高维),适合对微积分有初步了解(知道导数是什么)但想深入理解泰勒展开的读者。用“计算器计算sin(0.1)”的问题引入,说明为什么需要泰勒展开;用“乐高积木搭函数”的比喻,解释泰勒展开的核心思想;推导泰勒展开的数学公式,用导数和阶乘解释多项式系数;
2025-07-09 02:38:56
512
原创 AI算力网络时代通信领域虚拟化技术的新突破
随着大模型(如GPT-4、PaLM)、分布式训练与边缘推理等AI应用的爆发,算力已成为数字经济的核心生产力,而通信网络作为算力协同的“血管”,其性能瓶颈(如高延迟、低灵活性、静态资源分配)日益凸显。传统通信虚拟化技术(SDN/NFV)虽实现了“软件定义”,但无法满足AI算力网络对动态性、智能性、分布式协同的需求。
2025-07-09 02:25:11
192
原创 AI原生应用领域语义索引的前沿技术探索
当你向ChatGPT询问“苹果的新手机怎么样”时,它不会像传统搜索引擎那样只返回包含“苹果”和“手机”关键词的网页——它能理解“苹果”指的是科技公司,“新手机”指的是最新发布的iPhone,并从海量知识库中检索出相关的评测、参数和用户反馈。这背后的核心技术,就是语义索引。作为AI原生应用的“语义大脑”,语义索引正在颠覆传统索引的底层逻辑:从“找文字”转向“懂意义”。
2025-07-09 02:09:27
197
原创 AI原生SaaS架构中的多租户隔离技术详解
假设你开了一家智能共享健身房所有用户都用同一个场地(服务器集群)、同一批设备(AI模型、GPU);但每个用户需要:自己的 locker(数据隐私:健身记录、体测数据不被别人看到);固定的跑步机(资源保障:不会因为别人用得多而抢不到);专属的AI教练(个性化:根据自己的目标调整训练计划)。这就是AI原生SaaS既要共享资源(降低成本),又要保证每个租户(用户)的"专属感"(安全、性能、个性化)。而解决这个矛盾的关键,就是多租户隔离技术。
2025-07-09 01:51:00
394
《Kotlin项目实战开发》第3章+类型系统与可空类型
2017-09-30
ClickHouse 高性能、可扩展和低成本的OLAP数据库 陈光剑 20230912
2023-09-14
Will AI Fix Work? 工作节奏超过了我们的跟上能力 人工智能有望创造一种全新的工作方式
2023-05-17
THE AI INDEX REPORT 人工智能指数报告 Measuring trends in Artificial Inte
2023-04-06
An introduction to functional programming through lambda calculus.PDF.zip
2019-09-22
Principles of programming languages by Gilles Dowek (auth.) (z-lib.org).pdf
2021-04-28
Kotlin Coroutines by Tutorials (1st Edition)
2021-04-28
A Brief History of Artificial Intelligence
2021-04-28
2024 年可以实现 AGI 吗?
2024-01-02
TA创建的收藏夹 TA关注的收藏夹
TA关注的人