【学习笔记】​稳定扩散模型(Stable Diffusion)—— 最流行的 AI 绘画大模型,了解一下:输入的内容可以是图像,文本,部分图像,以及他们的组合——直接出图!

稳定扩散模型(Stable Diffusion Model)是深度学习中的一种新型模型,尤其适用于图像生成、修复和风格转换。该模型通过扩散过程与深度学习结合,使用稳定扩散算法来优化参数,生成高质量图像。模型由图像信息生成器和图像解码器两部分组成,前者在潜在空间中工作,后者则将信息解码为最终图像。稳定扩散模型还包含文本编码器,能够根据文本输入生成图像。文章介绍了模型的工作原理、组成部分以及其在文本到图像生成中的应用,展示了其在AI图像生成技术中的潜力和多才多艺性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

简介

深度学习中的稳定扩散算法:原理与实践

一、深度学习与稳定扩散算法

二、深度学习中的稳定扩散算法研究现状

三、未来发展趋势

The Illustrated Stable Diffusion

扩散模型的组成

1 图像信息生成器

2 图像解码器

什么是扩散?

扩散是如何工作的

通过去噪声来绘制图像

速度提升:在压缩(潜在)数据上扩散而非在像素数据上

文本编码器:一个Transformer语言模型

CLIP如何训练

将文本信息喂给图像生成过程

Unet噪声预测器的隐层(不包括文本)

带有文本的Unet噪声预测器隐层

总结

Resources

Acknowledgements

Contribute

Discuss

Citation


简介

稳定扩散模型(Stable Diffusion Model)是一种新兴的深度学习模型,它可以用于图像生成、图像修复、图像超分辨率等任务。它是由OpenAI公司提出的,该模型结合了扩散过程和深度学习技术,并使用了一种新的损失函数来指导模型的训练,从而可以在生成高质量图像的同时保持图像的稳定性和一致性。在本文中,我们将详细介绍稳定扩散模型的算法原理、训练方式和应用场景。

稳定扩散模型的核心是基于扩散过程的生成模型,通过联合模型来模拟随机过程。该模型使用扩散方程来描述随机过程,并使用噪声信号来控制扩散过程的速度和方向。具体而言,稳定扩散模型可以被看作是在随机过程中对噪声信号进行微调的过程,从而产生高质量的图像。

在稳定扩散模型中,每个时间步都对应着一个噪声信号。通过控制噪声信号的大小和方向&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值