【人工智能】LLM 大型语言模型和 Transformer 架构简介

本文深入探讨了大型语言模型(LLM)和Transformer架构的基础,揭示了像GPT这样的语言模型的工作原理。LLM在大量文本数据上训练,用于各种NLP任务,而Transformer通过注意力机制实现了对输入序列的高效处理。两者结合,如GPT-3,展示了强大的文本生成和理解能力,正在重塑自然语言处理的未来。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

大型语言模型 (LLM)

一、LLM的起源

二、LLM的发展阶段

三、LLM的应用领域

四、LLM的未来发展方向

Transformer 架构:构建块

注意力机制的概念

结论

参考


ChatGPT 在全球掀起波澜,创纪录地吸引了超过 100 万用户。作为初创公司的首席技术官,我每天都在讨论这项革命性的技术,因为围绕它的持续不断的嗡嗡声和炒作。GPT 的应用是无限的,但只有一些人花时间了解这些模型的工作原理。这篇博文旨在揭开 OpenAI 的 GPT(生成式预训练转换器)语言模型的神秘面纱。

GPT(Generative Pre-trained Transformer)是近年来受到广泛关注的一种语言模型,因为它能够执行各种自然语言处理任务,例如文本生成、摘要和问答。

这篇博文将探讨 LLM(大型语言模型)和转换器架构的基本概念,转换器架构是所有带有转换器的语言模型的构建块,包括 GPT。到本文结束时,您将对大型语言模型(例如 GPT)的构建块有一个基本的了解。

让我们首先了解什么是大型语言模型 (LLM)。

大型语言模型 (LLM)

大型语言模型 (LLM) 在大量文本数据上进行训练。因此,它们可以生成连贯流畅的文本。LLM 在各种自然语言处理任务上表现出色,例如语言翻译、文本摘要和会话代理。LLM 之所以表现如此出色,是因为它们在大量文

评论 61
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值