目录
Part I. Challenges of productionizing prompt engineering第 I 部分生产提示工程的挑战
The ambiguity of natural languages自然语言的歧义
Prompting vs. finetuning vs. alternatives提示与微调对比备择方案
Embeddings + vector databases 嵌入+矢量数据库
Backward and forward compatibility向后和向前兼容性
Part 2. Task composability 第 2 部分。任务可组合性
Applications that consist of multiple tasks包含多个任务的应用程序
Agents, tools, and control flows代理、工具和控制流
Part 3. Promising use cases第 3 部分。有前途的用例
Search and recommendation 搜索和推荐
A question that I’ve been asked a lot recently is how large language models (LLMs) will change machine learning workflows. After working with several companies who are working with LLM applications and personally going down a rabbit hole building my applications, I realized two things:
最近我经常被问到的一个问题是大型语言模型 (LLM) 将如何改变机器学习工作流程。在与几家使用 LLM 应用程序的公司合作并亲自深入构建我的应用程序之后,我意识到两件事:
- It’s easy to make something cool with LLMs, but very hard to make something production-ready with them.
使用 LLM 很容易做出很酷的东西,但很难用它们做出适合生产的东西。 - LLM limitations are exacerbate