在生产环境中构建 LLM 应用程序

文章探讨了将大型语言模型(LLMs)应用于生产环境中的关键挑战,包括自然语言的歧义、成本和延迟、提示与微调的权衡等。作者提出,LLM在任务可组合性方面的潜力,可以用于构建多任务应用程序,并讨论了有前途的用例,如AI助手、聊天机器人和搜索推荐。同时,文章强调了LLM在生产化过程中需要解决的歧义性和一致性问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

Part I. Challenges of productionizing prompt engineering第 I 部分生产提示工程的挑战

The ambiguity of natural languages自然语言的歧义

Cost and latency 成本和延迟

Prompting vs. finetuning vs. alternatives提示与微调对比备择方案

Embeddings + vector databases 嵌入+矢量数据库

Backward and forward compatibility向后和向前兼容性

Part 2. Task composability 第 2 部分。任务可组合性

Applications that consist of multiple tasks包含多个任务的应用程序

Agents, tools, and control flows代理、工具和控制流

Part 3. Promising use cases第 3 部分。有前途的用例

AI assistant

Chatbot

Programming and gaming 编程和游戏

Learning

Talk-to-your-data

Search and recommendation 搜索和推荐

Sales

SEO

Conclusion


A question that I’ve been asked a lot recently is how large language models (LLMs) will change machine learning workflows. After working with several companies who are working with LLM applications and personally going down a rabbit hole building my applications, I realized two things:
最近我经常被问到的一个问题是大型语言模型 (LLM) 将如何改变机器学习工作流程。在与几家使用 LLM 应用程序的公司合作并亲自深入构建我的应用程序之后,我意识到两件事:

  1. It’s easy to make something cool with LLMs, but very hard to make something production-ready with them.
    使用 LLM 很容易做出很酷的东西,但很难用它们做出适合生产的东西。
  2. LLM limitations are exacerbate
评论 54
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值