作者:禅与计算机程序设计艺术
1.简介
12月1日是AWS技术峰会在上海举行,期间在线发布了许多关于机器学习方面的新闻、技术分享和产品更新等。2021年新冠疫情期间,企业需要在一定程度上减少与远程工作的依赖,转而采用分布式计算方式进行机器学习任务的处理。为了保证高效和可靠的机器学习任务,企业需要考虑如何优化他们的机器学习管道。本文将详细阐述关于如何通过AWS平台部署最优秀的机器学习管道及其优化策略。
本文主要包括以下内容:
- 为什么选择AWS作为云平台
- 基于容器服务的机器学习管道原理
- 可用的AWS服务(SageMaker,EKS,Batch)
- SageMaker管道性能优化方法(数据增强,超参数优化,模型压缩)
- EKS管道性能优化方法(节点规模调整,负载均衡,自动伸缩)
- Batch管道性能优化方法(集群规模调整,批处理大小调整,节点类型选择)
- 总结与建议
为什么选择AWS作为云平台?
在机器学习领域,选择云平台可以获得以下好处:
- 满足计算密集型任务的需求
- 成本低廉,降低了投入成本