Self Attention Generative Adversarial Network

本文介绍了Self-Attention Generative Adversarial Networks(SAGAN),该模型结合了Self-Attention机制和GAN,提高了图像生成的性能。SAGAN由生成器和判别器组成,通过自注意力模块捕获全局和局部模式。文章详细阐述了SAGAN的模型结构、训练过程,并通过Inception Score和FID Score展示了实验结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

2017年,微软亚洲研究院发布了基于Self-Attention的GAN模型——SAGAN(Self-Attention Generative Adversarial Networks)。该模型通过将判别器(Discriminator)、生成器(Generator)和自注意机制(Self-Attention Mechanism)联合训练,消除了模型参数之间的依赖性,提高了模型的泛化能力。本文首先对Self-Attention相关背景进行介绍,然后阐述SAGAN的模型结构和训练过程,最后通过实验验证其有效性和效果。

一、Self-Attention概述

1.1 Attention是什么?

Attention mechanism是一个用来在序列数据中关注到特定元素的技术。Attention mechanism可以认为是一种计算权重的方法,使得网络可以根据输入数据不同部分的重要程度,调整相应的输出。换句话说,attention mechanism给输入加上了一层小型的神经网络,用来判断每个元素的重要程度。如图所示,就是一个例子,左边的是注意力机制,右边的是不带注意力机制的普通神经网络:

Attention mechanism可以看成是一种特征选择方法&#x

评论 17
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值