文章目录
- 深度学习极简教程:从神经网络到应用
- 深度学习极简教程——神经网络、模式识别、图像处理、语音处理、计算语言学、统计学等基础入门
- 1.简介
- 2.背景介绍
- 3.核心概念和术语说明
- 4.核心算法原理和具体操作步骤以及数学公式讲解
- 一、神经网络模型结构
- 二、深度置信网络(DCNN)
深度学习极简教程:从神经网络到应用
关键词: 深度学习,神经网络,模式识别,图像处理,语音处理,自然语言处理,统计学
深度学习作为人工智能领域的热门技术,近年来取得了突破性进展,其应用范围也扩展到图像识别、语音识别、自然语言处理等多个领域。本教程旨在为初学者提供一个简洁易懂的深度学习入门指南,涵盖神经网络基础、常用模型、典型应用以及未来趋势等方面。
1. 背景介绍
1.1 人工智能与机器学习
人工智能(Artificial Intelligence,AI)旨在使机器模拟人类智能,执行诸如学习、推理、解决问题等任务。机器学习(Machine Learning,ML)是实现人工智能的一种途径,其核心思想是让机器从数据中学习规律,并利用学到的规律对未知数据进行预测。
1.2 深度学习的兴起
深度学习(Deep Learning,DL)是机器学习的一个分支,其灵感来源于人脑神经网络的结构和功能。深度学习模型通常包含多个层次的神经元,能够自动学习数据的多层抽象表示,从而实现对复杂模式的识别和预测。
2. 核心概念与联系
2.1 神经网络
2.1.1 神经元模型
神经元是神经网络的基本单元,其结构如下图所示: