无监督图像聚类技术研究与实现

本文介绍了图像聚类技术,这是一种无监督学习方法,用于在没有标签信息的情况下划分图像。随着深度学习的发展,基于CNN的图像聚类技术在图像检索、分类、分割和数据挖掘等场景中得到了广泛应用。文章详细讨论了层次聚类和基于深度学习的图像聚类算法,并展望了未来的发展方向,包括算法改进和应用前景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

  图像聚类(Clustering)是利用相似性来对图像进行划分的一种无监督学习方法。相比于传统的分类任务,图像聚类的目标是在没有标签信息的情况下对图像集合进行划分,使得同一类的图像具有相似的特征,不同类的图像具有不同的特征。而对于许多实际应用场景来说,这一技术显得尤为重要,比如在医疗、交通领域、产业链管理等方面都有着广泛的应用。针对这一技术,随着深度学习技术的崛起,基于卷积神经网络(CNN)的图像聚类技术也逐渐被提出并得到了实践。   无监督图像聚类技术的关键之处就在于如何定义相似性。传统的相似性定义主要采用欧氏距离、余弦相似性等方式,然而这些标准往往无法反映真正的视觉上相似性。因而,更加有效的方法是通过神经网络自动学习到相似性定义。深度学习在这一方向上发力并取得巨大的成功。   本文将介绍基于深度学习的图像聚类技术及其应用。我们首先定义一些相关术语和概念,然后详细阐述基于深度学习的图像聚类技术的基本思路和具体方法,最后给出具体的操作流程以及使用案例。本文旨在提供系统且全面的图像聚类技术研究,希望能够促进计算机视觉、机器学习、生物信息学等领域的创新发展。       文章来源:知乎作者:周硕文——北京大学计算机系博士研究生、光华管理学院计算机工程系博士后   作者简介:高中三年级时,主修生物技术,进入清华大学学习统计学,但未受重视;高中毕业后

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值