如何在原始特征矩阵上加入随机噪声,并结合深度学习模型的效果对两种不同噪声方案进行性能比较

本文探讨了在原始特征矩阵上加入随机噪声以改进深度学习模型的效果。通过对比分析两种噪声方案——对每个元素和每个样本的特征矩阵添加噪声,发现后者能有效提高模型的泛化能力,降低过拟合现象,提高验证集和测试集的准确率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

当我们训练机器学习模型时,通常会利用到大量的特征作为输入,这些特征通常可以帮助模型更好地完成分类任务。然而,如果某些特征的值存在异常值,比如缺失值、错误值、重复值等,可能会影响模型的准确率和稳定性。为了解决这个问题,一种常用的方法就是引入噪声,即对原始特征进行扰动或者替换

通常来说,引入噪声的方法可以分成两类:

  • 在原始特征上加入随机噪声:这种方式是在原始特征矩阵中,将每个样本的某个特征值替换成一个随机的数,比如取自正态分布、均匀分布等。这样做的目的是模拟出真实数据中很少出现的样本,从而让模型能够更好地适应新的数据集。但是这种方式容易导致模型过拟合现象。
  • 使用噪声标签:另一种方式是利用噪声标签,即给某些样本赋予特定的标签,而不是真实的标签。举个例子,假设我们有10个样本,其中9个样本的标签都是正常的,只有第10个样本的标签是恶意的。那么我们可以在第一步中把所有样本的标签都改成正常的,第二步中把第10个样本的标签改成恶意的。这样做的目的是试图使模型学习到正常样本的特征,同时也能够区别于恶意样本。由于噪声标签占比极低,所以这种方法不会产生过拟合现象。

本文重点介绍如

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值