Attention机制系列——Attention机制简介及在NLP任务上的研究进展

本文介绍了Attention机制在自然语言处理中的应用,特别是在Transformer模型中的核心作用。详细讲解了Attention原理,包括Encoder和Decoder结构,以及Attention在机器翻译、文本分类和命名实体识别任务中的应用。还介绍了Transformer的Multi-Head Attention、Positional Encoding等关键概念,以及模型训练的步骤。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

Attention Mechanism(注意力机制)是一个重要的用于提高模型性能、生成质量和对长文本的处理能力的技术。深度学习模型中的注意力机制已经被广泛应用于各个领域,如图像分类、机器翻译、视频理解等任务。近年来,基于Attention机制的各种NLP模型的效果已经取得了令人惊艳的成果,如Transformer、BERT、GPT-3等。本系列博文将以Transformer模型为例,讲解Attention机制的基本概念、结构、应用及在NLP任务中的研究方向。

2.1.Attention原理

首先,介绍一下Attention原理。Attention机制解决的是神经网络中信息的丢失或遗漏的问题,它通过关注不同的输入元素并给予它们不同的权重来帮助神经网络学习到输入数据之间的关联性,从而更好地获取信息并做出决策。Attention模型由两部分组成:Encoder 和 Decoder。在训练时,输入序列先经过编码器得到一个固定维度的隐层表示,然后输入到解码器中进行生成,过程中每一步的输入都需要结合之前的输出和当前的输入。但是在实际应用中,由于存在长序列的情况,每一步输入都是依赖前面所有的输入,因此效率非常低下。Attention机制旨在实现对整个输入序列的关注,不仅可以学习到全局的信息,还可以充分利用局部的信息。Attention模型结构如下图所示:

上图左侧为编码器,包括词嵌入层、位置编码层和编码器层。其中,词嵌入层把原始输入符号转换为固定维度向量,位置编码层在编码器中引入位置信息,编码器层使用多头注意力机制来捕获全局上下文特征。Decoder包含了词嵌入层、位置编码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值