作者:禅与计算机程序设计艺术
1.简介
Supervised learning is a type of machine learning that involves training the algorithm on labeled data to predict outcomes based on input features. The algorithms are trained using an objective function that measures how well they can predict the output given inputs and their corresponding correct outputs. There are several supervised learning algorithms, such as linear regression, decision trees, support vector machines (SVM), neural networks, and random forests. This article will provide an overview of these popular supervised learning algorithms, including the fundamental concepts behind them, key differences between them, common use cases, advantages and disadvantages of each algorithm, as well as code examples for implementation in Py