作者:禅与计算机程序设计艺术
1.简介
深度学习(Deep Learning)是人工智能领域一个重要方向。它融合了机器学习、模式识别和计算机视觉等多种科学技术,通过对大数据进行训练而得出的模型具有极高的准确率。在此基础上,通过对多个网络层的堆叠构建深层神经网络,可以实现图像、文本、声音、视频等诸多领域的复杂任务的处理。而随着DL技术在日益火热的同时,也产生了一批从业者、学术界和企业,涌现出了一大批丰富的项目、工具、平台。
但是,由于DL技术的快速发展,以及DL框架的种类繁多、技能要求高、迭代速度快等特点,DL框架技术产业目前还处于发展初期,其前景仍然非常广阔。本文将通过介绍DL框架的基本概念、主要算法原理及其操作步骤,并结合相关开源框架的源码以及实际应用案例,系统性地介绍DL框架的技术产品及产业链条。最后,我们将对DL框架技术产业的前景及未来趋势给出一些展望。
2.基本概念术语说明
2.1 概念
深度学习(Deep Learning)是人工智能的一个分支,由Hinton教授(今何凯明)于2006年提出,他基于生物学、信息论、计算力学、统计学、优化理论和控制论等多门学科的最新研究成果,提出了深层神经网络的学习方法,能够解决复杂问题。
深度学习的关键是学习多层次非线性映射关系。它的每一层都是由多个神经元组成,并且每一层都能进行抽象化,从原始输入中提取有效特征。因此,深度学习通常是一种端到端(End-to-end)的方式,不需要进行特征工程。
深度学习通过堆叠层次的神经网络来学习特征表示,并利用这些特征表示来完成各种复杂任务。通过多层次的非线性映射关系,深度学习网络