作者:禅与计算机程序设计艺术
1.简介
在本系列教程中,我们将介绍如何利用 Tensorflow 2.0 来构建 Generative Adversarial Networks(GAN)并训练它来生成手写数字图像。GAN 是一种由一对网络组成的神经网络模型,其中一个网络被称作 discriminator ,另一个网络被称作 generator 。discriminator 是用来判断输入图片是真实的还是虚假的,而 generator 是根据噪声向量生成真实的图片。训练好这两个网络之后,generator 可以通过噪声向量生成任意数量的手写数字图像。
本教程主要基于 TensorFlow 2.0 框架,将介绍 GAN 的一些基本知识、概念以及相关数学知识,包括信息论基础、交叉熵损失函数、梯度下降法、权重初始化方法等。同时还会给出相应的代码示例,希望能够帮助读者更加理解 GAN 及其应用。
2.前期准备
2.1 安装环境
- Python 3.7+
- Tensorflow 2.0+
- Matplotlib
安装TensorFlow 2.0的命令如下:
pip install tensorflow==2.0
安装Matplotlib的命令如下:
pip install matplotlib
2.2 数据集下载
MNIST是一个十分类别的手写数字数据集,包