Memoryaugmented Neural Networks

本文详细介绍了Memory-augmented Neural Network(MANN)的组成,包括controller和memory network,并探讨了MANN如何应用于序列任务。接着,文章对比了MASS和BERT,提出了BERT-MASS模型,该模型结合了BERT与MANN,能够处理长文本,具有训练速度快、适应性强的特点。BERT-MASS模型的计算流程、架构和数学公式进行了详尽的解释,包括Memory-Network Module的Controller、Memory Write和Read Module。最后,文章讨论了BERT-MASS的优缺点和应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

Memory-augmented Neural Network(MANN)

MANN由两个组件组成: controller和memory network。controller负责产生memory matrix,它会根据input的history,通过计算得到当前应该存储哪些信息。memory network则用来存储这些信息,并对新的input进行编码。两者相互作用,共同完成对input的建模。

上图展示了MANN结构中的controller及其对应memory network。在训练过程中,基于之前的输入history,controller将生成一个memory matrix。memory network接收到controller生成的matrix,然后利用自学习的方式存储历史数据,并根据新输入进行编码。编码后的信息可以送入后续的任务中。MANN除了能够解决序列型的问题外,还可以应用于多种场景下,比如图片分类、目标检测、语言模型等。

MASS与BERT

MASS(Masked Self-Attention for Sentence Embedding)是一种比起BERT更早的方法,它的作者研究发现,即使BERT也可以取得同样的性能,但是当它用于文本嵌入任务时,速度还是很慢。MASS提出

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值