作者:禅与计算机程序设计艺术
1.简介
Memory-augmented Neural Network(MANN)
MANN由两个组件组成: controller和memory network。controller负责产生memory matrix,它会根据input的history,通过计算得到当前应该存储哪些信息。memory network则用来存储这些信息,并对新的input进行编码。两者相互作用,共同完成对input的建模。
上图展示了MANN结构中的controller及其对应memory network。在训练过程中,基于之前的输入history,controller将生成一个memory matrix。memory network接收到controller生成的matrix,然后利用自学习的方式存储历史数据,并根据新输入进行编码。编码后的信息可以送入后续的任务中。MANN除了能够解决序列型的问题外,还可以应用于多种场景下,比如图片分类、目标检测、语言模型等。
MASS与BERT
MASS(Masked Self-Attention for Sentence Embedding)是一种比起BERT更早的方法,它的作者研究发现,即使BERT也可以取得同样的性能,但是当它用于文本嵌入任务时,速度还是很慢。MASS提出