初始状态预估:根据观察数据及系统参数,利用线性系统状态方程建立初始状态估计值和状态协方差矩阵。

本文介绍了如何根据观测数据和系统参数,利用线性系统状态方程建立初始状态估计值和状态协方差矩阵。通过求解状态方程和概率分布假设检验,得出系统参数估计结果。同时,文章还讨论了未来发展趋势和面临的技术挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

本文主要通过引入对实际系统状态的观测数据,利用线性系统状态方程建立初始状态估计值和状态协方差矩阵,并进行概率分布假设检验,最后得出初步的初值估计结果。

一般来说,建立初始状态估计值的目的是为了在后续过程中更准确地估计系统状态的分布情况,从而能够提高控制精度、节约资源等。因此,对于系统的初值估计,就显得尤为重要。

根据观察数据及系统参数,建立初始状态估计值通常包括两个阶段:

  1. 第一步:求解线性系统状态方程建立初始状态估计值;
  2. 第二步:进行概率分布假设检验;

在第一步,需要先给定线性系统的状态方程:

\begin{cases}
x_{t+1}=Ax_t + Bu_t\\
y_t=Cx_t + Du_t
\end{cases}

其中$A$, $B$, $C$, $D$分别表示系统状态转移矩阵,系统输入矩阵,系统输出矩阵,系统噪声矩阵。此处略去不必要的参数,只保留与观测相关的参数($u_t$)、系统响应相关的参数($x_t$)、相关系数矩阵($R$)、初始状态条件($x^0$)以及观测序列($y_t$)。

给定上述方程后,就可以用观测数据$y_t$拟合出线性系

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值