作者:禅与计算机程序设计艺术
1.简介
张量分解(Tensor Decomposition)是指将一个大的矩阵分解成两个或多个较小的子矩阵,并且在保持原矩阵性质的情况下对新矩阵进行有效的运算。张量分解对于很多高维数据分析、机器学习等领域都非常重要。张量分�作为一种有效的降维方法,可以提高运算效率并简化模型建立过程,所以在该领域的研究工作越来越多。
张量分解方法一般可分为全局核张量分解(Global Tensor Decomposition)和局部核张量分解(Local Tensor Decomposition)。本文主要讨论的是全局核张量分解。全局核张量分解的特点是考虑了矩阵元素之间的依赖关系,同时还考虑到矩阵各个特征向量之间可能存在相关性。
全局核张量分解算法通常包括如下四个步骤:
- 对输入矩阵A进行奇异值分解SVD,得到三个矩阵U、S和V^T,其中V^T表示的就是矩阵A的特征向量;
- 对矩阵A的特征向量按照某种规则进行重新排列组合,如保留重要的特征向量或是仅选择部分特征向量等;
- 通过选定的特征向量构建一个新的张量,这个张量与原始矩阵A具有相同的秩,但与其余特征向量之间的关系发生变化;
- 使用得到的张量对原始矩阵A进行相应的运算。
张量分解技术的发展历史可追溯至1972年,当时Fis