标题2:张量分解有哪些方法?

张量分解是高维数据分析的重要工具,尤其在全球核张量分解中,通过SVD等方法处理矩阵,选择特征向量构建新张量,降低运算复杂度。本文介绍了全局核张量分解的原理、步骤和数学基础,包括SVD、特征向量选择策略、张量构建等关键概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

张量分解(Tensor Decomposition)是指将一个大的矩阵分解成两个或多个较小的子矩阵,并且在保持原矩阵性质的情况下对新矩阵进行有效的运算。张量分解对于很多高维数据分析、机器学习等领域都非常重要。张量分�作为一种有效的降维方法,可以提高运算效率并简化模型建立过程,所以在该领域的研究工作越来越多。

张量分解方法一般可分为全局核张量分解(Global Tensor Decomposition)和局部核张量分解(Local Tensor Decomposition)。本文主要讨论的是全局核张量分解。全局核张量分解的特点是考虑了矩阵元素之间的依赖关系,同时还考虑到矩阵各个特征向量之间可能存在相关性。

全局核张量分解算法通常包括如下四个步骤:

  1. 对输入矩阵A进行奇异值分解SVD,得到三个矩阵U、S和V^T,其中V^T表示的就是矩阵A的特征向量;
  2. 对矩阵A的特征向量按照某种规则进行重新排列组合,如保留重要的特征向量或是仅选择部分特征向量等;
  3. 通过选定的特征向量构建一个新的张量,这个张量与原始矩阵A具有相同的秩,但与其余特征向量之间的关系发生变化;
  4. 使用得到的张量对原始矩阵A进行相应的运算。

张量分解技术的发展历史可追溯至1972年,当时Fis

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值