【强化学习】通过实现Q-learning算法来深入了解强化学习 A Primer on Reinforcement Learning with QLearning in Python

本文通过实现Q-learning算法,详细介绍了强化学习的基本概念,包括MDP环境模型、策略、奖励信号、Value函数和Bellman方程。Q-learning是一种基于值迭代的方法,通过不断更新Q函数来寻找最大化长期奖励的动作。文中还提供了具体的代码实例,涵盖环境创建、训练、测试和可视化过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

强化学习(Reinforcement learning)是机器学习中的一个领域,旨在让机器自动地按照一定的策略去做出决策,以最大化奖励或最小化代价。它可以用于解决很多实际问题,比如自动驾驶汽车、机器人运动规划等。在本文中,我们将通过实现Q-learning算法来深入了解强化学习。

Q-learning算法是一个基于函数逼近的算法,通过一个评估网络来预测一个状态下不同行动的价值,并据此选择最优行为。这一算法从根本上来说是一个动态规划的思想,即将当前状态和所有可能行为都纳入考虑,然后找出一个最大化累积奖赏的方法。

文章的主要读者是有一定机器学习基础的人群。假设读者对线性回归模型、神经网络、贝叶斯概率、动态规划、蒙特卡洛树搜索算法有基本的了解,同时对Python、TensorFlow有一定的编程能力。

2.核心概念

首先,让我们先介绍一下强化学习的一些核心概念。

MDP(Markov Decision Process)环境模型

MDP(Markov Decision Process)是一个五元组(S,{ a},R,T,γ)(S,\{a\},R,T,\gamma)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值