作者:禅与计算机程序设计艺术
1.简介
强化学习(Reinforcement learning)是机器学习中的一个领域,旨在让机器自动地按照一定的策略去做出决策,以最大化奖励或最小化代价。它可以用于解决很多实际问题,比如自动驾驶汽车、机器人运动规划等。在本文中,我们将通过实现Q-learning算法来深入了解强化学习。
Q-learning算法是一个基于函数逼近的算法,通过一个评估网络来预测一个状态下不同行动的价值,并据此选择最优行为。这一算法从根本上来说是一个动态规划的思想,即将当前状态和所有可能行为都纳入考虑,然后找出一个最大化累积奖赏的方法。
文章的主要读者是有一定机器学习基础的人群。假设读者对线性回归模型、神经网络、贝叶斯概率、动态规划、蒙特卡洛树搜索算法有基本的了解,同时对Python、TensorFlow有一定的编程能力。
2.核心概念
首先,让我们先介绍一下强化学习的一些核心概念。
MDP(Markov Decision Process)环境模型
MDP(Markov Decision Process)是一个五元组(S,{ a},R,T,γ)(S,\{a\},R,T,\gamma)