作者:禅与计算机程序设计艺术
1.简介
近年来,基于概率矩阵分解(Probabilistic Matrix Factorization)的推荐系统在工业界备受推崇。以物品推荐为例,在给用户推荐物品时,通过分析用户行为数据、商品特征数据等信息,先找出用户兴趣相似的个体群,再将这些个体群中看过物品的用户聚合到一起,通过物品之间的交互关系以及用户的偏好偏向,预测用户对每个物品的感兴趣程度,并给出相应的推荐。概率矩阵分解是一个求解多维数据相关性的问题,它可以根据用户-物品矩阵和其他一些辅助数据(如物品-标签矩阵、物品-上下文矩阵)学习出一个用户嵌入向量和一个物品嵌入向量,从而实现用户-物品之间的相似度计算。由于概率矩阵分解可以捕获物品之间的复杂联系,所以应用范围十分广泛。对于推荐系统而言,最大的优势就是能够给用户提供个性化的推荐,即推荐系统不仅能够预测用户对每个物品的喜好程度,还能够考虑用户当前已有的购买历史和偏好,结合个性化的推荐策略提供更加符合用户口味的推荐。
然而,概率矩阵分解方法存在着几个主要缺点:
- 估计用户嵌入向量和物品嵌入向量较为耗时;
- 概率矩阵分解方法只能给出某用户对某物品的相似度评分,无法给出具体推荐物品列表,因此无法向用户进行精确、详细的反馈;
- 该方法无法对用户的浏览习惯和点击行为进行建模