作者:禅与计算机程序设计艺术
1.简介
人脸检测、分割和识别是计算机视觉领域最热门的三大任务之一。本文将详细介绍深度学习在人脸识别领域的最新模型——“FR-CNN”,并阐述其算法流程及关键实现步骤。文章首先会对人脸检测、分割和识别相关的基本概念、术语进行介绍,然后再对FRCNN进行深入剖析,解释其核心算法原理,并给出计算图和具体实现步骤。最后,文章还会介绍其未来的发展方向和研究进展,并提出一些面向实际工程应用时可能存在的问题或挑战。希望通过阅读本文,读者可以更全面地了解人脸检测、分割和识别的最新技术,掌握其关键实现步骤及算法原理,并能够灵活运用于实际工程中。
一、人脸检测、分割和识别的基本概念和术语
1.1 什么是人脸?
我们都知道人类拥有六只眼睛,它们就像是人类的五官一样,可以让我们看到世界各处的事物,但是如何确定这个人的眼睛是否真的在看着自己?也就是说,如何才能准确地检测到人脸?这个问题被称作人脸检测。 图1:人脸检测示意图
人脸检测也称为定位、追踪、定位、识别(Localization,Tracking,Identification)等四个任务之一。它一般涉及两个阶段:人脸检测定位阶段和人脸关键点检测阶段。人脸检测定位阶段主要用于确定输入图像中的所有人脸