信息检索方法综述

本文详细介绍了信息检索的概念、定义、分类、查询模型、评估指标及主流算法,包括TF-IDF、LSA和PageRank。通过实际案例分析了jieba和Snowball分词器的效果,以及LDA和Word2Vec主题模型的相似度计算,为信息检索领域的研究和实践提供了全面的理论与实践指导。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

随着互联网、移动互联网、电子商务、智能手机等各种新兴产业的蓬勃发展,无论从生活中的需求还是社会发展的需求都对用户提供快速准确的信息检索能力成为越来越迫切的需求。信息检索是一个非常具有挑战性的问题,它涉及到信息存储、索引、检索、排序、过滤、归纳、概括、关联、分析、分类、比较、推理等多方面技能,可以说是信息领域内的一项复杂而又重要的科学研究。本文从信息检索的定义和相关概念出发,介绍了目前最流行的信息检索算法和技术,并结合实际案例进行了深入剖析,力求将各类信息检索算法和技术的理论知识、实践经验以及最新研究成果综合阐述给读者。

本文将从以下几个方面进行整体介绍:

1.定义与概念
2.分类
3.查询模型
4.评估指标
5.检索算法与技术
6.实际案例与分析

2.定义与概念

2.1 什么是信息检索?

信息检索(Information Retrieval)是指从海量信息中获取有用的信息的过程。一般地,信息检索分为两步,即信息检索模型和信息检索系统。

1.信息检索模型
首先,要确定信息检索模型,主要包括信息表示、检索策略、结果排序、结果呈现等五个方面。

  • 信息表示
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值