作者:禅与计算机程序设计艺术
1.简介
在临床早期检测出胰腺癌的基因突变时,目前最常用的检查是假阴性,即先做出一个假设,然后对剩下的阴性病例进行检测。但事实上,随着时间的推移,发现假阴性病例中潜伏的真菌变种会越来越多、数量也会越来越大。这样一来,得到的假阴性就会更多、准确率更低。因此,基于国际上公认的假阴性检测标准,又提出了新的假阴性检测方案。One-class SVM(OC-SVM)是一种传统机器学习方法,通过构建支持向量机来对一系列数据点进行分类。然而,由于对不同个体样本之间差异较大的检测效应,OC-SVM模型可能会误认为某些个体具有良性疾病或“真阴性”,进而将其错误地划入正负类别中。为了解决这一问题,有学者提出了“Two mouse models”框架,该框架假设在模拟双鼠疫患者的细胞学分化过程中的两只老鼠——雄性鼠和雌性鼠,通过雌性鼠对抗积极的细胞中枢(Active Oncogene-Specific T Cells, AOS T cells),并通过雄性鼠抑制AOS T cells形成恶性T淋巴细胞(Dead T-Lymphocytes, DT LC)。通过对两只老鼠进行细胞型鉴定、细胞形态学分析以及二维转染监测等方法,可以对治疗前期的两种类型细胞的活动状态进行比较,从而提高检测的精确度和鲁棒性。本文就要讨论这一模型的优缺点及其适用范围。