Attention Is All You Need——Transformer模型解读及应用

Transformer模型因其强大的并行计算能力和全局依赖关系捕获能力,在深度学习领域受到广泛关注。本文深入探讨Transformer的基本概念,包括Multi-Head Attention、Positional Encoding、Encoder-Decoder结构,并通过实际案例介绍其在机器翻译等任务中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.简介

自从机器翻译、图片识别、音频合成等各种领域涌现出的大量数据以及计算能力,深度学习(Deep Learning)在各个领域都取得了巨大的成功。但是,传统的神经网络结构仍然存在一些局限性:

  1. 过多的耦合:传统神经网络模型中参数之间高度耦合,难以学习到长距离依赖关系;

  2. 时延性:传统神经网络的时延性较高,即输入到输出的时间间隔比较长,无法处理实时性要求较高的场景;

  3. 可解释性差:传统神经网络模型的参数难以理解,不能通过可视化的方式直观了解其工作机制,不利于模型优化和调试。

为了克服这些局限性,近年来出现了以Attention机制为核心的新型神经网络模型,例如Google提出的BERT、Facebook提出的GPT-2等。这些模型基于注意力机制进行改进,能够学习到更丰富的上下文信息,有效解决了传统神经网络模型所面临的三个问题。另外,新的模型结构也使得模型训练更加容易,并提供了模型预测的速度。

Attention Is All You Need(缩写为“Transformer”),是一类基于Transformer的模型,它的主体是Encoder-Decoder结构,其中编码器负责输入序列到表征向量的映射,解码器则负责将表征向量转变为输出序列。不同于之前的神经网络模型,Transformer模型完全利用注意力机制,其不同之处在于:

  1. 强大的模型大小:Transformer模型相比于之前的模型,在参数数量和层数上都有着显著的增加;

  2. 更强的并行

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值