作者:禅与计算机程序设计艺术
文章目录
1.简介
机器学习(ML)已经成为当今热门话题之一。许多公司都在寻找AI工程师或者研究员加入到机器学习团队中来进行研究开发。由于机器学习的新颖性和强大的功能,使得它可以解决很多现实世界的问题。对于一个完全不懂计算机的初学者来说,如何快速的上手机器学习并应用到实际生产环境中是一个难题。
本文将通过示例项目来展示如何使用Python语言来进行机器学习。让我们一起来尝试学习并理解机器学习背后的原理和流程吧!
2.项目介绍
2.1 数据集选择
首先需要收集、整理数据集。这个数据集最好能够代表真实情况。选择的数据集越具有代表性,机器学习的效果就越好。一般会从如下几方面出发:
- 数据规模:数据量越大,模型效果越好。
- 数据质量:数据质量越高,模型效果越好。
- 数据噪声:如果数据里面存在噪声,可以使用机器学习的预处理方法进行去噪处理。
- 数据分布:不同的分布可能会带来不同的效果。如对正态分布的数据训练效果较好,而对类别型数据或其他类型的分布则效果不佳。
2.2 模型选择
我们需要选择合适的模型算法来训练我们的机器学习模型。模型算法有很多种,常用的有线性回归、逻辑回归、SVM等。不同的模型算法对不同类型的数据的效果差异非常大。因此,我们需要根据数据的特点选择合适的模型。比如,对于文本分类任务,我们可以使用SVM或神经网络。对于图像识别任务,我们可以