Hierarchical Clustering: 层次聚类

层次聚类是一种重要的机器学习技术,用于数据挖掘和信息检索。它基于距离或相似性对对象进行分组,形成层次结构的聚类簇。文章详细介绍了层次聚类的概念、核心算法原理,包括距离计算、聚类中心合并等步骤,以及在图像处理、文本处理等领域的应用。同时,提供了Python代码实例来辅助理解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.背景介绍

在数据分析、数据挖掘和信息检索中,层次聚类(Hierarchical clustering)是一个非常重要的机器学习技术。它的主要思想是:将对象按照距离或相似性进行划分组,形成一系列的聚类簇。层次聚类的目的是对一组对象的集合进行自动分类,使得同一类的对象之间具有较大的相似度,不同类的对象之间具有较小的相似度。例如,在图片搜索引擎中,基于颜色、纹理等特征的图像相似性,可以帮助用户找到相关的图像;在文本检索领域,基于主题的文档相似性,可以帮助用户找到相关的文档。层次聚类的基本思路如下图所示:

图1 层次聚类基本思路示意图

通常来说,层次聚类的实现过程可分为以下三个步骤:

  1. 数据准备阶段:加载数据集,清洗、规范化、过滤噪声数据等,得到原始数据样本。
  2. 聚类阶段:将数据样本通过距离或相似性指标进行聚类,得到初始的聚类中心。
  3. 分裂合并阶段:根据上一步生成的聚类中心,重新调整聚类结果,直到得到最终的聚类结果。

层次聚类常用于无监督学习、数据挖掘、图像处理、文本处理等领域。它能够有效地发现数据中的结构和模式。在图像处理方面,它能够从图像的局部拼接中提取出复杂的特征,并将它们组织成一系列的层次聚类。在

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值