模型压缩与量化技术

本文介绍了深度学习模型的压缩与量化技术,包括模型结构搜索、权重裁剪/量化、蒸馏、模型微调和模型集成。通过这些方法,可以减少模型大小、提升模型精度,以适应更广泛的部署环境。文章还详细讲解了每个步骤的核心概念、算法原理及操作步骤,并提供了代码实例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.背景介绍

近几年随着移动端设备性能的提升和硬件算力的增长,深度学习模型的训练已经越来越受到计算机视觉、自然语言处理等领域的需求驱动。但是随之而来的任务是在准确率、推理速度和资源占用三个方面对模型进行压缩与量化,以便满足更广泛的部署环境。

模型压缩(model compression)是指通过一些手段将模型体积减小,并在一定程度上保持其精度,从而减少内存、计算资源、网络带宽等方面的压力,进而实现模型在不同应用场景下的快速部署和推理。

模型量化(quantization)是指通过一些方法将浮点模型转换成整数形式的定点模型,这种转换可以降低模型大小、加快模型执行速度、降低计算资源占用等。目前业界主要使用的两种量化方式是定点卷积核和分离注意力机制。

模型压缩与量化技术的应用通常由如下几个步骤组成:

  1. 模型结构搜索:首先搜索出一个比较小且准确的模型结构,然后对该模型进行剪枝,去除无关紧要的参数,减少参数数量,同时还要兼顾模型效果。这一步可以通过人工设计搜索规则或强化学习算法进行优化。

  2. 权重裁剪/量化:裁剪后的模型主要有两个目的:一是减少模型大小,二是提升模型精度。裁剪的方法有两种:一种是按照比例裁剪࿰

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值