Python 实战人工智能数学基础:决策树

本文深入探讨了决策树的基础知识,包括特征选择、决策树生成和剪枝。介绍了ID3算法的工作原理,详细阐述了信息熵、信息增益等关键概念,并提供了ID3算法的代码实现。此外,还对比了决策树与其他模型的区别,强调了其在处理离散型变量和多维数据方面的优势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

作者:禅与计算机程序设计艺术

1.背景介绍

决策树(decision tree)是一种机器学习的算法,它可以用来做分类、回归或排序任务。决策树模型由节点和连接着的边组成,每个节点表示一个特征,而连接着的边则表示根据特征的不同将数据分割成两个子集的方式。决策树算法基于树结构,树中的每一个节点表示一个条件判断,该判断基于之前给出的若干个特征值进行,如果符合条件,就进入下一节点,否则继续向下判断。最后到达叶子结点时,将会得到一个预测结果。决策树在对数据进行分析和训练时,可以自动选择最优的条件,因此通常比较容易理解和解释。与其他模型相比,决策树模型在数据预处理阶段没有特别高的要求。它的优点包括:易于理解、应用广泛、训练速度快、缺乏参数调整的困难、适合处理不确定性较大的情况、输出结果具有可解释性强等等。 本文将介绍决策树的基本知识和原理,并通过实例和代码讲解其工作原理。决策树有许多种形式,包括ID3、C4.5和CART等等,但本文只从最简单的决策树开始,即ID3算法。

2.核心概念与联系

决策树是一种通过树形结构对数据的特征进行分析的算法。其构造过程主要由三个步骤构成:特征选择、决策树生成和剪枝。

2.1 特征选择

首先,需要选择最优的划分方式。决策树的构建过程就是搜索最优的特征划分方式&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值