作者:禅与计算机程序设计艺术
1.背景介绍
决策树(decision tree)是一种机器学习的算法,它可以用来做分类、回归或排序任务。决策树模型由节点和连接着的边组成,每个节点表示一个特征,而连接着的边则表示根据特征的不同将数据分割成两个子集的方式。决策树算法基于树结构,树中的每一个节点表示一个条件判断,该判断基于之前给出的若干个特征值进行,如果符合条件,就进入下一节点,否则继续向下判断。最后到达叶子结点时,将会得到一个预测结果。决策树在对数据进行分析和训练时,可以自动选择最优的条件,因此通常比较容易理解和解释。与其他模型相比,决策树模型在数据预处理阶段没有特别高的要求。它的优点包括:易于理解、应用广泛、训练速度快、缺乏参数调整的困难、适合处理不确定性较大的情况、输出结果具有可解释性强等等。 本文将介绍决策树的基本知识和原理,并通过实例和代码讲解其工作原理。决策树有许多种形式,包括ID3、C4.5和CART等等,但本文只从最简单的决策树开始,即ID3算法。
2.核心概念与联系
决策树是一种通过树形结构对数据的特征进行分析的算法。其构造过程主要由三个步骤构成:特征选择、决策树生成和剪枝。
2.1 特征选择
首先,需要选择最优的划分方式。决策树的构建过程就是搜索最优的特征划分方式&#x