分布式模型存储与加载的核心思想是化整为零,分而治之。
具体来说,就是将原本庞大的模型参数和结构信息分割成多个更小的部分,就像切蛋糕一样,然后将这些“蛋糕块”分散存储在不同的机器节点上。当需要加载模型时,各个节点并行读取自己负责的“蛋糕块”,最终在内存中“拼凑”出完整的模型。
这种方式巧妙地解决了单机存储和加载的瓶颈,就好比一个人搬不动一整块大蛋糕,但可以分成小块分批搬运。
总的来说,分布式模型存储与加载技术通过分担存储压力、并行化加载过程,为训练和部署超大规模人工智能模型提供了必要的支撑。
文章目录
- 人工智能大模型技术基础系列之:分布式模型存储与加载
- 人工智能大模型技术基础系列之:分布式模型存储与加载
- 人工智能大模型技术基础系列之:分布式模型存储与加载
- 1.背景介绍
- 2.核心概念与联系
- 3.核心算法原理与操作步骤详解
人工智能大模型技术基础系列之:分布式模型存储与加载
关键词:大规模语言模型、分布式存储、模型并行、张量并行、流水线并行、模型加载优化、内存管理
1. 背景介绍
随着人工智能技术的快速发展,大规模语言模型(Large Language Models, LLMs)如GPT