作者:禅与计算机程序设计艺术
1.背景介绍
线性回归(Linear Regression)与最小二乘法(Ordinary Least Squares)是机器学习领域最基础的两个算法。但是理解这些算法背后的原理与联系,掌握算法求解的具体方法和数学模型公式,需要扎实的数学功底和编程能力。本文将从以下方面对线性回归与最小二乘法进行阐述:
1.基本原理和联系; 2.求解算法及其数学模型公式; 3.具体代码实例; 4.未来的研究方向与挑战。
2.核心概念与联系
1.线性回归
线性回归是利用称为线性函数来近似描述两个或多个变量间的关系,并找出一个使得误差或距离最小的线性方程的方法。它的一般形式是:y = a + b*x,其中a、b为待估参数,x为自变量,y为因变量。它是一种简单而有效的监督学习方法,可以用来预测数值型或定类别变量之间的关系。它最简单的形式就是一条直线,表示出两种或更多维度中的变量的线性关系。
2.最小二乘法
最小二乘法(Ordinary Least Squares, OLS),又叫做最小平方法,是一种非常流行且重要的统计分析方法。它是一种经典的优化问题解决方法,通常用于求解相关系数矩阵的线性回归方程,最小化残差的平方和,因此也被称作“最小平滑曲线”、“最小均方误差”或者“均方最小 squares”,简称“OLS”。
最小二乘法的过程分两步:首先确定系数参数,即找到能够最小化残差平方和的线性方程,然后根据该线性方程计算各个变量在该线性模型下的期望值。因此,如果模型中存在多元共线性,那么就会产生问题。不过,可以通过