1.背景介绍
概述
随着人工智能(AI)技术的不断发展,越来越多的应用场景需要基于自然语言进行处理和交互。例如,自动回复、聊天机器人、基于对话的问答系统等等。为了解决这些应用中涉及的自动文本生成的问题,出现了大量的语言模型,如GPT-2、BERT、XLNet等。而对于企业级的应用开发来说,如何有效地利用这些模型实现智能文本生成功能并将其集成到业务系统中是一个难点。这就要求企业必须要有一个清晰的架构设计来实现这个任务。本文将分享一套AI大型语言模型企业级应用开发架构——智能文本生成与创作的总体设计,主要内容包括:
- 模型选择
- 数据准备工作
- 模型训练与优化
- 服务部署与线上推理
- 性能调优与管理
- 测试结果与后续迭代
模型选择
首先,我们应该根据不同的业务场景和需求来选择相应的模型。无论是用于聊天机器人的闲聊还是问答系统,还是用于创作自动化的语料生成,语言模型都是至关重要的。根据不同的数据规模、计算资源、并行性要求、推理时间限制等因素,我们可以选取不同的模型,比如基于BERT的小模型、基于XLNet的大模型,或GPT-2。
这里给出一些常用模型的比较:
BERT
BERT是Google于2018年提出的预训练语言模型,通过无监督学习大规模语料库得到一个深层的神经网络模型。在预