1.背景介绍
人工智能(Artificial Intelligence,简称AI)在近几年的快速发展中,越来越多的人开始关注并投入这个领域的研发与应用。而语言模型的训练、部署及其后端服务的搭建,往往成为一个比较复杂的过程。很多企业都面临着语言模型的选型、优化、服务等一系列繁琐的环节,需要耗费大量的人力、财力和物力资源。因此,如何在企业级环境下,快速且有效地进行语言模型的应用实施,是各大公司一直追求的目标。为了更好地理解该领域的技术细节,作者结合自身经验以及对相关领域的研究,基于实际场景和客户需求,梳理了语言模型的应用开发流程和技术架构,并详细阐述了AI文本处理自动化框架的设计思路。本文将主要围绕以下几个方面进行深入剖析:
语言模型的选型:包括两种模型选择方式,分别是基于语言和任务的深度学习模型和基于规则的统计模型。在目前的AI技术发展阶段,深度学习模型能够在一定程度上克服传统的静态语言模型的不足,在各种NLP任务上表现出色。但同时,由于语言模型训练时间长,资源成本高等问题,在企业级环境下应用还面临着一些挑战。因此,基于规则的统计模型更加适用于企业级环境下的小规模模型,例如,针对特定行业或垂直领域的预训练模型。
生产环境的搭建:涉及到不同场景下的机器学习系统架构设计,主要包括模型的分离部署、负载均衡、安全认证、日