1.背景介绍
1.1 概述
近年来,随着人工智能领域的不断发展,基于深度学习的语言模型已经得到了很大的进步。在实际的生产环境中,一般会将训练好的语言模型部署到服务器上,通过接口提供服务,但这种方式对大规模的并发请求响应能力以及可用性会存在问题。为了解决这一问题,大量研究人员提出了使用分布式框架进行多机并行计算的方法,同时也出现了基于消息队列的分布式处理方案。而随着云计算、容器技术的发展,基于大型语言模型的企业级应用也逐渐进入大众视野。那么如何快速、可靠地实现一个基于大型语言模型的企业级应用呢?本文将从以下三个方面进行阐述:
- 架构设计:围绕开源框架Hugging Face的transformers库,我们将介绍如何搭建起用于大型语言模型训练及推理的应用架构,该架构中使用的消息队列将是RabbitMQ,Redis以及Memcached等。通过对架构组件的选择、调优及部署优化,能够帮助开发者更好地完成大型语言模型的部署与应用。
- 性能优化:如何高效利用CPU/GPU资源,提升模型预测速度以及降低服务器资源消耗是提升企业级应用整体性能的关键。本文将介绍一些常用优化技巧以及如何进行性能分析,有效地减少计算资源消耗。
- 弹性伸缩:如何快速方便地横向扩展服务能力,确保其稳