异常检测算法:从统计学到深度学习
1.背景介绍
1.1 什么是异常检测
异常检测(Anomaly Detection)是一种广泛应用于数据挖掘、模式识别和机器学习领域的技术,旨在从大量数据中识别出与众不同的异常数据点或模式。这些异常数据点可能代表着系统故障、欺诈行为、网络入侵等异常事件,及时发现并处理这些异常情况对于保证系统的安全性和可靠性至关重要。
1.2 异常检测的重要性
随着大数据时代的到来,海量数据的采集和存储已经不再是问题,关键在于如何从这些庞大的数据中提取有价值的信息。异常检测作为数据分析的重要手段,在以下领域发挥着重要作用:
- 网络安全:检测网络入侵行为、垃圾邮件等
- 金融欺诈:识别信用卡欺诈、洗钱等
- 故障检测:监控制造业设备故障、IT系统故障等
- 医疗保健:发现疾病异常、医疗保险欺诈等
- 物流供应链:识别物流异常、库存异常等
1.3 异常检测的挑战
尽管异常检测在诸多领域有着广泛应用,但其本身也面临着一些挑战:
- 异常数据分布未知且变化多端
- 异常数据与正常数据界限模糊
- 异常数据通常属于小概率事件,数据不平衡
- 高维数据下的异常检测计算复杂度高
- 缺乏足够的异常数据标注进行监督学习