RAG检索增强:打破大型语言模型知识局限的利器

本文介绍了检索增强技术(RAG)如何解决大型语言模型(LLMs)的知识局限,通过结合外部知识库,提升LLMs的文本生成质量和准确性。RAG包括基于文档检索和知识图谱的两种主要类型,涉及BM25算法和深度学习排序模型。实际应用中,RAG在问答系统、文本摘要和对话系统等方面展现出优势。未来,多模态和个性化RAG将是发展方向,但也面临知识库构建和检索效率等挑战。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 背景介绍

1.1 大型语言模型的崛起与局限

近年来,随着深度学习技术的不断发展,大型语言模型(LLMs)如GPT-3、LaMDA等在自然语言处理领域取得了显著的成果。它们能够生成流畅的文本、进行机器翻译、编写不同类型的创意内容,甚至与人类进行对话。然而,LLMs也存在着明显的局限性:

  • 知识局限: LLMs的知识来源于训练数据,这使得它们对训练数据以外的知识缺乏了解。
  • 时效性: LLMs的知识截止于训练数据的时间点,无法及时获取最新的信息。
  • 事实性: LLMs倾向于生成流畅但可能不符合事实的文本。

1.2 检索增强技术:打破知识局限

为了解决LLMs的知识局限问题,研究人员提出了检索增强(Retrieval Augmentation)技术。该技术通过将外部知识库与LLMs结合,使得LLMs能够访问和利用更广泛的知识,从而提升其生成文本的质量和准确性。

2. 核心概念与联系

2.1 检索增强技术框架

检索增强技术框架主要包含三个核心模块:

    评论
    添加红包

    请填写红包祝福语或标题

    红包个数最小为10个

    红包金额最低5元

    当前余额3.43前往充值 >
    需支付:10.00
    成就一亿技术人!
    领取后你会自动成为博主和红包主的粉丝 规则
    hope_wisdom
    发出的红包

    打赏作者

    AI天才研究院

    你的鼓励将是我创作的最大动力

    ¥1 ¥2 ¥4 ¥6 ¥10 ¥20
    扫码支付:¥1
    获取中
    扫码支付

    您的余额不足,请更换扫码支付或充值

    打赏作者

    实付
    使用余额支付
    点击重新获取
    扫码支付
    钱包余额 0

    抵扣说明:

    1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
    2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

    余额充值