1. 背景介绍
1.1 大型语言模型的崛起与局限
近年来,随着深度学习技术的不断发展,大型语言模型(LLMs)如GPT-3、LaMDA等在自然语言处理领域取得了显著的成果。它们能够生成流畅的文本、进行机器翻译、编写不同类型的创意内容,甚至与人类进行对话。然而,LLMs也存在着明显的局限性:
- 知识局限: LLMs的知识来源于训练数据,这使得它们对训练数据以外的知识缺乏了解。
- 时效性: LLMs的知识截止于训练数据的时间点,无法及时获取最新的信息。
- 事实性: LLMs倾向于生成流畅但可能不符合事实的文本。
1.2 检索增强技术:打破知识局限
为了解决LLMs的知识局限问题,研究人员提出了检索增强(Retrieval Augmentation)技术。该技术通过将外部知识库与LLMs结合,使得LLMs能够访问和利用更广泛的知识,从而提升其生成文本的质量和准确性。
2. 核心概念与联系
2.1 检索增强技术框架
检索增强技术框架主要包含三个核心模块: