1. 背景介绍
随着信息爆炸和知识的快速积累,传统的搜索引擎和问答系统越来越难以满足用户对精准、个性化信息的需求。为了解决这个问题,研究者们开始探索将外部知识库与深度学习模型相结合的方法,从而构建更加智能的问答系统。RAG (Retrieval-Augmented Generation) 模型应运而生,它能够有效地融合外部知识库和语言模型的能力,为用户提供更加全面、准确的答案。
1.1 知识库与问答系统
传统的问答系统通常依赖于预定义的知识库,例如百科全书、词典等。这些知识库包含了大量的结构化信息,但它们往往难以更新和扩展,并且无法涵盖所有领域的知识。此外,传统的问答系统通常只能回答简单的 factual questions,而无法处理复杂的 open ended questions 或需要推理和理解的问题。
1.2 深度学习与语言模型
近年来,深度学习技术在自然语言处理领域取得了显著的进展。语言模型,例如 BERT、GPT-3 等,能够学习到语言的语法、语义和语用信息,并生成流畅、自然的文本。然而,这些语言模型通常缺乏对外部知识的理解,因此在回答需要特定领域知识的问题时表现不佳。
1.3 RAG模型的出现
RAG 模型结合了知识库和语言模型的优势,通过检索相关的知识库内容并将其与语