RAG模型:REALM与RAGSequence

RAG模型结合知识库与深度学习,解决传统问答系统的局限。REALM和RAG-Sequence是两种实现方式,通过检索和生成策略提升回答的准确性和全面性。REALM采用可微分检索,RAG-Sequence则将检索内容与查询拼接。实际应用包括智能问答、信息检索和文本摘要等领域。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 背景介绍

随着信息爆炸和知识的快速积累,传统的搜索引擎和问答系统越来越难以满足用户对精准、个性化信息的需求。为了解决这个问题,研究者们开始探索将外部知识库与深度学习模型相结合的方法,从而构建更加智能的问答系统。RAG (Retrieval-Augmented Generation) 模型应运而生,它能够有效地融合外部知识库和语言模型的能力,为用户提供更加全面、准确的答案。

1.1 知识库与问答系统

传统的问答系统通常依赖于预定义的知识库,例如百科全书、词典等。这些知识库包含了大量的结构化信息,但它们往往难以更新和扩展,并且无法涵盖所有领域的知识。此外,传统的问答系统通常只能回答简单的 factual questions,而无法处理复杂的 open ended questions 或需要推理和理解的问题。

1.2 深度学习与语言模型

近年来,深度学习技术在自然语言处理领域取得了显著的进展。语言模型,例如 BERT、GPT-3 等,能够学习到语言的语法、语义和语用信息,并生成流畅、自然的文本。然而,这些语言模型通常缺乏对外部知识的理解,因此在回答需要特定领域知识的问题时表现不佳。

1.3 RAG模型的出现

RAG 模型结合了知识库和语言模型的优势,通过检索相关的知识库内容并将其与语

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值