RAG实战:从入门到精通

RAG(检索增强生成)框架通过结合外部知识库,弥补大语言模型(LLMs)在知识储备和推理能力上的不足。本文介绍了RAG的优势,核心概念如检索器和生成器,并探讨了TF-IDF和BM25等算法在RAG中的应用,还提供了项目实践和实际应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 背景介绍

近年来,大语言模型(LLMs)在自然语言处理领域取得了显著进展,它们能够生成流畅、连贯的文本,并在各种任务中表现出色。然而,LLMs 往往缺乏特定领域的知识和推理能力,限制了它们在实际应用中的潜力。为了弥补这一缺陷,研究人员提出了检索增强生成(Retrieval-Augmented Generation,RAG)框架,将外部知识库与 LLMs 相结合,从而提升模型的知识储备和推理能力。

1.1. LLMs 的局限性

尽管 LLMs 在语言生成方面表现出色,但它们存在以下局限性:

  • 知识储备有限: LLMs 的知识主要来源于训练数据,而训练数据通常无法覆盖所有领域和主题。
  • 推理能力不足: LLMs 擅长生成流畅的文本,但在逻辑推理和知识整合方面存在缺陷。
  • 可解释性差: LLMs 的内部机制复杂,难以理解其决策过程和推理依据。

1.2. RAG 的优势

RAG 框架通过引入外部知识库,有效地克服了 LLMs 的局限性,其优势包括:

  • 知识增强: RAG 模型可以访
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值