1. 背景介绍
近年来,大语言模型(LLMs)在自然语言处理领域取得了显著进展,它们能够生成流畅、连贯的文本,并在各种任务中表现出色。然而,LLMs 往往缺乏特定领域的知识和推理能力,限制了它们在实际应用中的潜力。为了弥补这一缺陷,研究人员提出了检索增强生成(Retrieval-Augmented Generation,RAG)框架,将外部知识库与 LLMs 相结合,从而提升模型的知识储备和推理能力。
1.1. LLMs 的局限性
尽管 LLMs 在语言生成方面表现出色,但它们存在以下局限性:
- 知识储备有限: LLMs 的知识主要来源于训练数据,而训练数据通常无法覆盖所有领域和主题。
- 推理能力不足: LLMs 擅长生成流畅的文本,但在逻辑推理和知识整合方面存在缺陷。
- 可解释性差: LLMs 的内部机制复杂,难以理解其决策过程和推理依据。
1.2. RAG 的优势
RAG 框架通过引入外部知识库,有效地克服了 LLMs 的局限性,其优势包括:
- 知识增强: RAG 模型可以访