1. 背景介绍
语音识别和语音合成技术作为人机交互的重要组成部分,近年来取得了长足的发展。传统的语音识别和合成系统依赖于复杂的声学模型和语言模型,需要大量的训练数据和专业知识。然而,随着深度学习的兴起,大型语言模型(LLMs)展现出在语音领域应用的巨大潜力。LLMs强大的语言理解和生成能力,为语音识别和合成带来了新的突破。
1.1 语音识别技术发展历程
语音识别技术的发展可以追溯到20世纪50年代,经历了从模板匹配到统计模型再到深度学习的演变过程。早期的语音识别系统基于模板匹配,将语音信号与预先存储的模板进行比较,识别率较低。20世纪80年代,隐马尔可夫模型(HMM)的引入,使得语音识别系统能够对语音信号进行统计建模,识别准确率得到显著提升。近年来,深度学习的兴起,尤其是深度神经网络(DNN)的应用,使得语音识别技术取得了突破性的进展。
1.2 语音合成技术发展历程
语音合成技术的发展与语音识别技术类似,也经历了从拼接合成到参数合成再到基于深度学习的合成方法的演变过程。早期的语音合成系统采用拼接合成方法,将预先录制的语音片段拼接在一起,合成语音的自然度较差。20世纪90年代,参数合成方法的出现,使得语音合成系统能够根据输入的文本生成语音参数,合成语音的自然度得到提升。近年来,基于深度学习的语音合成方法,如Tacotron和WaveNet,能够合成更加自然流畅的语音。
1.3 大型语言模型的崛起
大型语言模型(LLMs)是近年来自然语言处理领域的一项重要突破。LLMs通过在大规模文本数据上进行训练,学习到丰富的