1. 背景介绍
1.1 人工智能浪潮下的挑战
近年来,人工智能技术迅猛发展,各行各业纷纷将其应用于实际场景中。然而,随着AI模型复杂度的不断提升,训练和部署AI模型的难度也随之增加。传统的开发流程往往需要大量的手动操作,效率低下且容易出错。
1.2 Kubeflow的诞生
为了解决上述问题,Google于2017年推出了Kubeflow,一个基于Kubernetes的开源平台,旨在简化机器学习工作流的开发、部署和管理。Kubeflow提供了一套完整的工具链,涵盖了从数据预处理、模型训练、模型服务到模型监控的各个环节。
2. 核心概念与联系
2.1 Kubernetes
Kubernetes是一个开源的容器编排平台,用于自动化部署、扩展和管理容器化应用程序。Kubeflow基于Kubernetes构建,利用其强大的容器管理能力,为AI工作流提供了可靠的运行环境。
2.2 Kubeflow组件
Kubeflow由多个组件组成,每个组件负责不同的功能:
- Pipelines: 用于构建和管理机器学习工作流。
- Katib