1. 背景介绍
1.1 多模态的兴起与意义
近年来,随着人工智能技术的飞速发展,单一模态的局限性日益凸显。图像、文本、语音等不同模态数据之间存在着丰富的语义关联,如何有效地融合多模态信息成为了人工智能领域的研究热点。多模态学习旨在通过整合不同模态的信息,实现更全面、更准确的感知和理解,为人工智能应用带来更强大的能力。
1.2 大模型时代的机遇与挑战
深度学习的蓬勃发展催生了大模型的诞生,这些模型拥有庞大的参数量和强大的表征能力,在自然语言处理、计算机视觉等领域取得了突破性进展。然而,大模型也面临着新的挑战,例如数据规模、计算成本、可解释性等。如何构建高效、可靠的多模态大模型,成为了人工智能领域亟待解决的关键问题。
1.3 认知能力评测的重要性
多模态大模型的认知能力是衡量其智能水平的重要指标。认知能力评测旨在评估模型在理解、推理、决策等方面的能力,为模型的优化和应用提供重要参考。
2. 核心概念与联系
2.1 多模态数据的表示
多模态数据的表示是多模态学习的基础。常用的表示方法包括:
- 联合表示 (Joint Representation):将不同模态的数据映射到一个