1. 背景介绍
近年来,自然语言处理(NLP)技术的发展迅猛,深度学习模型在这一领域取得了显著成果。其中,基于transformer架构的大型语言模型(如BERT、GPT系列等)在多个NLP任务中取得了优异成绩。这些模型通常由数百万到数十亿个参数组成,因此在实际应用中,需要进行模型微调以适应特定任务。此外,文本数据处理在大型模型的开发过程中起着关键作用。本文将从零开始介绍如何开发和微调大型语言模型,以及文本数据处理的相关知识。
2. 核心概念与联系
在深入探讨大型模型的开发和微调之前,我们需要了解一些基本概念:
- 自然语言处理(NLP):NLP是一门研究计算机理解、生成和处理自然语言的科学与技术。其核心任务包括文本分类、情感分析、机器翻译、摘要生成、问答系统等。
- 深度学习:深度学习是一种以人工神经网络为基础的机器学习方法,通过对大量数据进行训练,自动学习特征表示和模型参数,从而实现计算机对数据的高效学习。
- transformer:transformer是一种基于自注意力机制的神经网络架构,能够捕捉序列中的长距离依赖关系。它在NLP领域的应用使得大型语言模型变得可能。
- 微调