从零开始大模型开发与微调:文本数据处理

本文介绍了深度学习背景下的大型语言模型开发与微调,重点讲解了transformer架构和自注意力机制。通过实际项目代码示例展示了BERT模型的微调过程,探讨了相关技术在信息抽取、机器翻译等场景的应用,并推荐了学习资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. 背景介绍

近年来,自然语言处理(NLP)技术的发展迅猛,深度学习模型在这一领域取得了显著成果。其中,基于transformer架构的大型语言模型(如BERT、GPT系列等)在多个NLP任务中取得了优异成绩。这些模型通常由数百万到数十亿个参数组成,因此在实际应用中,需要进行模型微调以适应特定任务。此外,文本数据处理在大型模型的开发过程中起着关键作用。本文将从零开始介绍如何开发和微调大型语言模型,以及文本数据处理的相关知识。

2. 核心概念与联系

在深入探讨大型模型的开发和微调之前,我们需要了解一些基本概念:

  1. 自然语言处理(NLP):NLP是一门研究计算机理解、生成和处理自然语言的科学与技术。其核心任务包括文本分类、情感分析、机器翻译、摘要生成、问答系统等。
  2. 深度学习:深度学习是一种以人工神经网络为基础的机器学习方法,通过对大量数据进行训练,自动学习特征表示和模型参数,从而实现计算机对数据的高效学习。
  3. transformer:transformer是一种基于自注意力机制的神经网络架构,能够捕捉序列中的长距离依赖关系。它在NLP领域的应用使得大型语言模型变得可能。
  4. 微调
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值