Storm原理与代码实例讲解
1.背景介绍
1.1 大数据处理的挑战
在当今大数据时代,海量数据的实时处理已成为许多企业面临的重大挑战。传统的批处理框架如Hadoop MapReduce已无法满足实时性要求,因此流式计算框架应运而生。
1.2 流式计算框架概述
流式计算框架可以实时、高吞吐地处理源源不断到来的数据流。目前主流的流式计算框架包括Storm、Spark Streaming、Flink等。其中,Storm是业界最早成熟的纯实时流式计算框架。
1.3 Storm框架简介
Storm由Twitter开源,提供分布式、高容错、低延迟的实时流式数据处理能力。它采用master-slave架构,支持水平扩展,可运行在廉价的硬件集群上,具有卓越的性能表现。
2.核心概念与联系
2.1 Topology(拓扑)
Topology定义了Storm的计算任务,代表数据流的转换过程。一个Topology由Spouts和Bolts组成,通过Stream连接形成有向无环图(DAG)。Topology会被提交到Storm集群运行。
2.2 Spout(数据源)
Spout是Topolo