FCN原理与代码实例讲解
1.背景介绍
全卷积网络(Fully Convolutional Networks, FCN)是一种用于语义分割任务的深度学习模型。语义分割是计算机视觉领域的一个重要任务,旨在对图像中的每个像素进行分类,将图像像素划分为不同的语义类别,如人、车辆、道路等。传统的卷积神经网络在分类任务上表现出色,但在像素级别的密集预测任务上存在局限性。FCN则通过有效地利用卷积网络的强大特征提取能力,同时采用一些创新的技术来解决语义分割任务,成为该领域的开创性工作。
2.核心概念与联系
2.1 FCN架构
FCN的核心思想是将传统的卷积神经网络中的全连接层替换为卷积层,使整个网络变成一个全卷积结构。这种结构允许输入图像的空间维度在网络中保持不变,从而可以对任意尺寸的输入图像进行像素级别的预测。
FCN的基本架构如下所示:
graph TD
A[输入图像] --> B[卷积层]
B --> C[池化层]
C --> D[卷积层]
D --> E[池化层]
E --> F[卷积层]
F --> G[上采样层]
G --> H[跳跃连接]
H --> I[上采样层]
I --> J[分类层]
J --> K[输出分割掩码]
- 卷积层: 用于提取图像特征