Transformer大模型实战 理解ROUGE 评估指标

本文深入探讨ROUGE评估指标在Transformer大模型中的应用,解析ROUGE-N、ROUGE-L、ROUGE-W和ROUGE-S的核心算法,并通过Python实践代码展示其使用。同时,讨论ROUGE在新闻摘要、学术论文和会议记录等场景的实际应用,以及未来评估指标的发展趋势。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Transformer大模型实战 理解ROUGE 评估指标

1. 背景介绍

随着自然语言处理(NLP)技术的飞速发展,以Transformer为代表的大语言模型(LLM)在文本生成、机器翻译、文本摘要等任务中取得了令人瞩目的成果。而评估生成文本的质量一直是NLP领域的一大挑战。ROUGE(Recall-Oriented Understudy for Gisting Evaluation)作为一种经典的自动评估指标,在文本摘要、机器翻译等任务中被广泛应用。本文将深入探讨ROUGE评估指标的原理,并结合Transformer模型在文本摘要任务中的实战,帮助读者全面理解ROUGE指标的应用。

1.1 NLP的发展历程

1.1.1 早期的统计语言模型
1.1.2 深度学习时代的神经网络语言模型
1.1.3 Transformer的革命性突破

1.2 文本摘要任务简介

1.2.1 摘要的定义与分类
1.2.2 摘要的应用场景
1.2.3 摘要任务面临的挑战

1.3 自动评估指标概述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI天才研究院

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值